Science Education
>

Isolation and Enrichment of Human Adipose-derived Stromal Cells for Enhanced Osteogenesis

Instructor Prep
concepts
Student Protocol
JoVE 杂志
发育生物学
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 杂志 发育生物学
Isolation and Enrichment of Human Adipose-derived Stromal Cells for Enhanced Osteogenesis

NOTE: All patient samples were obtained with informed consent, and experimental protocols were reviewed and approved by Stanford University Institutional Review Board (Protocol #2188 and #9999).

1. Cell Isolation and Culture:

  1. Obtain human subcutaneous adipose tissue from healthy female patients undergoing elective lipoaspiration of the abdomen, flank, and/or thigh region under local/general anesthesia. Ensure that Institutional Review Board (IRB) approval has been obtained for the protocol of isolating ASCs from human tissues, and follow institutional safety precautions while working with such materials.
  2. To obtain the SVF from the lipoaspirated adipose tissue, first wash the lipoaspirate three times with equal volumes of 1x sterile phosphate-buffered saline (PBS). Carefully aspirate and discard the bottom aqueous layer.
  3. Prepare the collagenase digestion buffer: 0.075% Type I collagenase in Hank’s Balanced Salt Solution (HBSS). Prepare FACS buffer: 2% FBS, 1% P188 and 1% Pen-Strep in PBS. Filter both solutions using a commercially available 0.22 μm pore size fast flow polyethersulfone filter.
  4. To digest the washed adipose tissue, add an equal volume of collagenase digestion buffer and place digestion vessel securely in a shaking water bath for 60 min at 37 °C (approximately 180 shakes/min).
    NOTE: It is best to use a larger volume digestion vessel than required, as this allows for maximal digestion during shaking (i.e., 250 ml of collagenase digestion buffer, 250 ml of washed adipose tissue in a 1L sterile flask).
  5. Neutralize enzymatic activity by adding an equal volume of FACS buffer and allowing to sit at RT for 5 min. Next, centrifuge at 233 x g for 20 min at 4 °C.
  6. Carefully aspirate and discard the supernatant, taking care not to disturb the high-density SVF pellet.
  7. Resuspend the pellet in 5-10 ml of RT red cell lysis buffer, based on pellet size. Leave solution to sit at RT for 5 min and centrifuge at 233 x g for 5 min at RT.
  8. Aspirate supernatant and resuspend the pellet by adding 5-10 ml of traditional growth media, based on pellet size (Dulbecco's Modified Eagle Medium [DMEM]/10% FBS/1% penicillin-streptomycin solution [pen-strep]).
  9. Filter the suspension through a 100 μm nylon cell strainer to remove cellular debris.
  10. Centrifuge at 233 x g for 5 min at 4 °C, and discard the supernatant without disrupting the pellet.
  11. Resuspend the pellet in 5-10 ml of traditional growth media, based on pellet size.
  12. Place 2 x 106 cells in a 15 cm standard culture dish and establish primary cultures O/N at 37 °C/21% O2, 5% CO2. Maintain at sub-confluent levels to prevent spontaneous differentiation at 37 °C/21% O2, 5% CO2 in growth media.
    NOTE: Cell density in a fully confluent 15 cm plate is approximately 4-6 x 106 cells.

2. Staining

  1. Culture ASCs in traditional growth medium at 37 °C/21% O2, 5% CO2, for 36 hr before staining/sorting.
  2. Lift ASCs from culture plates using Accutase (as per manufacturer’s protocol).
  3. Wash cells once with FACS buffer (PBS with 2% FBS and 1% pen-strep).
  4. Centrifuge at 233 x g for 5 min at 4 °C.
  5. Discard the supernatant without disrupting the pellet. Resuspend the cells in 0.5-1 ml of FACS buffer (depending on cell number and amount of antibody desired).
    NOTE: The volume of the cell suspension, in accordance with the FACS antibody manufacturer’s recommendations, determines antibody concentration. However, titration of antibody concentration, using a starting concentration of 1:100, is usually advised if it is the first time to use an antibody.
  6. Count the total number of cells using a hemocytometer.
  7. Reserve 100 ul aliquots in 1.5 ml centrifuge tubes to be used for an unstained sample and single-color controls (according to the number of fluorescent antibodies used).
  8. Add the appropriate fluorescently-labeled monoclonal antibodies (at predetermined concentrations, per manufacturer’s instructions) and incubate for 20-30 min on ice, shielded from light.
    1. To label osteogenic subpopulation: Dilute anti-CD90 (APC anti-human CD90 (Thy1)) or anti-CD105 (FITC anti-human CD105 (endoglin)) in FACS buffer to a concentration of 1:50.
    2. To label other cell populations (e.g., hematopoietic and endothelial cells): Dilute anti-CD45 (Anti-Human CD45 Pacific Blue), anti-CD34 (Anti-Human CD34 APC), and/or anti-CD31 (Anti-Human CD31 PE) in FACS buffer to a concentration of 1:50.
    3. If not using directly conjugated antibodies, use a biotinylated primary antibody with an appropriate streptavidin-conjugated secondary antibody, such as Streptavidin PE-Cy7, at a dilution of 1:100.
  9. After incubation, wash the cells twice: fill tubes with FACS buffer and centrifuge at 233 x g for 5 min at 4 °C, aspirating supernatant.
  10. Resuspend the cells in 400-500 μl FACS buffer and filter samples through a 70 μm nylon cell strainer to remove cell clumps.
  11. Transfer labeled cells into FACS tubes with filter top and keep samples on ice for the duration of analysis.

3. Fluorescence-activated Cell Sorting

NOTE: The following steps mandate previous knowledge in fluorescence-activated cell sorting (FACS) or the assistance of a skilled technician.

  1. Using the appropriate FACS software, design analysis plots to examine forward scatter (FSC), side scatter (SSC), Phycoerythrin (PE)-Texas Red, Pacific Blue, Fluorescein Isothiocyanate (FITC), Allophycocyanin (APC) and any other fluorophore used to label cells.
  2. Prior to loading into the cell sorter, briefly vortex each sample to resuspend the cells.
  3. Commence with analysis of the unstained sample in order to set gates for the total cell population, to exclude cellular debris, and to determine baseline autofluorescence.
  4. Add propidium iodide (PI) to the unstained sample and analyze it in order to visualize the population of live cells within the total cell population. Construct a gate around this population.
  5. Analyze a single-color control sample for each fluorochrome in order to set fluorescence compensation.
  6. Analyze the stained sample to set the position of gates for sorting.
  7. Add PI to the stained sample in order to stain dead cells.
  8. Sort the labeled cell populations. Sort into either 1.5 ml centrifuge tubes or conical tubes (15 ml) containing culture medium.
  9. Manually cease sorting once the required quantity of cells has been obtained.
  10. Using FACS, perform a purity check by analyzing a small fraction (e.g., 500 cells) of the acquired cell population.
    NOTE: This step confirms the purity of the sorted cell populations. Ideally, purity should be greater than 90-95%.
  11. Centrifuge cells at 233 x g for 5 min at 4 °C immediately following completion of sorting and resuspend in 1 ml of fresh medium containing 10% FBS.
    NOTE: The amount of media used may be increased based on the size of the cell pellet.
  12. Plate on gelatin-coated plates to improve cell viability. Depending on final cell yield, plate 300,000 cells per well in a 6-well plate, 100,000 cells per well in a 12-well plate.

Isolation and Enrichment of Human Adipose-derived Stromal Cells for Enhanced Osteogenesis

Learning Objectives

Using CD90 as a marker for cells with enhanced osteogenesis results in isolation of a highly-enriched populations of human ASCs (Figure 1A, 1B). ASCs were stained with Pacific Blue-conjugated anti-human CD45, FITC-conjugated anti-human CD105, and APC-conjugated anti-human CD90. After sorting, the level of purity was greater than 98%, as quantified by post-sort analysis.

Defining groups of cells based on transcriptional profiles allowed for prospective isolation of two novel subpopulations. To characterize the osteogenic potential of each promising subpopulation (CD90+ and CD105low), as well as that of the unsorted population in vitro, cells were cultured in osteogenic differentiation medium for 14 days, as previously described 6,8,9. Alkaline phosphatase staining (used for early detection of bone formation10) at Day 7 was significantly increased in the CD90+ population relative to other groups (Figure 2A). This was observed both grossly and after quantification (Figure 2A). Similarly, Alizarin Red staining (an assay used to detect extracellular matrix mineralization and a metric for end-terminal osteogenic differentiation9) at Day 14 showed that CD90+ ASCs were able to mineralize a significantly greater amount of extracellular matrix (Figure 2B). Isolated ASCs retain the ability to undergo osteogenic differentiation after sorting but may require a few days to recover. It is essential to perform all further experiments with low passage cells, as ASCs become senescent during propagation in culture.

Figure 1
Figure 1: (A) Gates for cell size and complexity were drawn to exclude cell debris and isolate a population of single cells for further analysis. (B) FACS analysis of single-sorted CD90 (left) and single-sorted CD105 (right) ASCs 36 hr after ASC harvest. Please click here to view a larger version of this figure.

Figure 2
Figure 2: (A) Alkaline phosphatase staining (top) and quantification (bottom) of ASCs after 7 days of culture in osteogenic differentiation medium. (B) Alizarin red staining (top) and quantification of staining (bottom) of ASCs after 14 days of culture in osteogenic differentiation medium. CD90+ ASCs and CD105low cells show increased alkaline phosphatase staining and extracellular matrix mineralization compared to unsorted cells (*p <0.05; two-tailed student’s t-test). Please click here to view a larger version of this figure.

List of Materials

Name of Reagent/Material Company Catalog Number Comments
Disposable 250 mL Conical Tubes Corning (Thomas Scientific) 2602A43
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122
DMEM, high glucose, GlutaMAX Supplement Gibco 10566-016
PBS, pH 7.4 Gibco 10010-023
Betadine – Antiseptic Povidone/Iodine Solution Purdue  PFC-67618015017
Hank's Balanced Salt Solution, 1X Cellgro 21-023-CV
Fetal Bovine Serum, Certified, US Origin Gibco 16000-044
Collagenase from Clostridium histolyticum Sigma-Aldrich C0130-5G
ACCUTASE Cell Detachment Solution Stem Cell Technologies 7920
APC Mouse Anti-Human CD90 BD Pharmingen 559869
FITC Mouse anti-Human CD105 (Endoglin) BD Pharmingen 561443
Anti-Human CD45 eFluor 450 (Pacific Blue replacement)  eBioscience 48-9459-41
Anti-Human CD34 APC eBioscience 17-0349-41
Anti-Human CD31 (PECAM-1) PE eBioscience 12-0319-41
Streptavidin PE-Cyanine7 eBioscience 25-4317-82
BD FACS Aria II instrument BD Biosciences
BD FACSDiva Software BD Biosciences

Lab Prep

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.

Procedure

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.

Tags