Summary

中性粒细胞分离和分析,以确定他们的淋巴瘤细胞的敏感性对治疗药物的作用

Published: March 25, 2016
doi:

Summary

Neutrophils are the most abundant type of white blood cells. The isolation of neutrophils from human blood by density gradient separation method and the differentiation of human promyelocytic (HL60) cells along the granulocytic pathway are described here; to test their role on sensitivity of lymphoma cells to anti-lymphoma agents.

Abstract

Neutrophils are the most abundant (40% to 75%) type of white blood cells and among the first inflammatory cells to migrate towards the site of inflammation. They are key players in the innate immune system and play major roles in cancer biology. Neutrophils have been proposed as key mediators of malignant transformation, tumor progression, angiogenesis and in the modulation of the antitumor immunity; through their release of soluble factors or their interaction with tumor cells. To characterize the specific functions of neutrophils, a fast and reliable method is coveted for in vitro isolation of neutrophils from human blood. Here, a density gradient separation method is demonstrated to isolate neutrophils as well as mononuclear cells from the blood. The procedure consists of layering the density gradient solution such as Ficoll carefully above the diluted blood obtained from patients diagnosed with chronic lymphocytic leukemia (CLL), followed by centrifugation, isolation of mononuclear layer, separation of neutrophils from RBCsby dextran then lysis of residual erythrocytes. This method has been shown to isolate neutrophils ≥ 90 % pure. To mimic the tumor microenvironment, 3-dimensional (3D) experiments were performed using basement membrane matrix such as Matrigel. Given the short half-life of neutrophils in vitro, 3D experiments with fresh human neutrophils cannot be performed. For this reason promyelocytic HL60 cells are differentiated along the granulocytic pathway using the differentiation inducers dimethyl sulfoxide (DMSO) and retinoic acid (RA). The aim of our experiments is to study the role of neutrophils on the sensitivity of lymphoma cells to anti-lymphoma agents. However these methods can be generalized to study the interactions of neutrophils or neutrophil-like cells with a large range of cell types in different situations.

Introduction

先天免疫细胞构成的细胞的肿瘤微环境内的重要比例,并已与患者和癌症1动物模型中的肿瘤恶性相关。最近,已变得更加广泛地理解,慢性免疫应答中促进肿瘤进展,转移和耐化学疗法2发挥关键作用。巨噬细胞是已被证明直接调节对化疗3,4-肿瘤细胞应答重要的先天免疫细胞。然而,中性粒细胞,在先天免疫系统的主要参与者的作用,在调节肿瘤响应于抗癌治疗是不知道。这些协议的目的是使用快速和可靠的方法来分离来自CLL患者的血液样本的中性粒细胞和分化的HL60细胞沿粒细胞途径,以研究在调节淋巴瘤细胞抗淋巴瘤剂的敏感性的作用。

<p class="“jove_content”">中性粒细胞是针对入侵微生物6在血液5,并作为防御的第一道防线是先天免疫系统的最丰富的细胞成分。嗜中性粒细胞有几种病理条件7上升除了可变效应子功能有效先天免疫反应中起重要作用。因此,以分离从其它血细胞,如密度梯度分离法中性粒细胞的快速和可靠的方法,需要在体外研究。使用这种方法的中性粒细胞隔离将有利于在体内体外中性粒细胞介导的免疫功能进一步研究。

以获得嗜中性粒细胞的纯群体的能力对于患者的调查与免疫疾病8的重要的第一步。密度梯度分离方法是在其中获得的细胞高产率的理想的技术。该方法具ð涉及在含有稀释的人血,然后离心以300g为无休息35分钟试管底部加入密度梯度溶液中。的单核细胞的环出现在界面和嗜中性粒细胞驻留低于前者。这种方法具有相对于其他可用的方法显著优点,如嗜中性粒细胞分离试剂盒这是更昂贵的9。此外,通过使用针对特异于人嗜中性粒细胞的表面标志物的抗体的商品试剂盒中分离人血液嗜中性粒细胞,增强细胞活化或分化的风险。密度梯度分离方法允许嗜中性粒细胞的一个短的时间周期内的隔离。在同一步骤,单核细胞也分离和回收。它是在其中,以实现功能完整性得到纯的细胞的高收率的基本技术。

为了模仿肿瘤microenvironment,进行3D实验。定体外中性粒细胞的半衰期很短,用新鲜的人中性粒细胞的3D实验不是决定性的。出于这个原因,早幼粒细胞(HL60)细胞被诱导分化成使用分化诱导剂二甲基亚砜(DMSO)和视黄酸(RA)嗜中性粒细胞样细胞。用分化的HL60细胞(HL60 差异 )将防止有中性粒细胞,由于来自不同供体隔离不同的反应。

体外三维培养模型代表在体外 2D模型之间和体内模型的中间阶段。在二维培养,细胞扩散塑料表面上形成不自然的细胞附件被这个合成表面沉积变性的蛋白质。相反,在由于细胞和它们合成的细胞外基质的3D培养形式自然细胞 – 细胞附件细胞对它们所连接的天然材料。出于这个原因,3D共培养模型,尤其是癌症细胞和其他细胞类型之间,已经指示他们的肿瘤的生长,血管生成和转移的贡献非常有用的。其结果是,3D培养使细胞培养模仿存在于体内 10的生理条件。

Protocol

1.中性粒细胞分离共培养原发性白血病细胞注:过程是里昂医院伦理委员会与签署知情同意所有患者同意下进行的。 原代白血病细胞和中性粒细胞的分离 从确诊为慢性淋巴细胞白血病(CLL)的患者收集EDTA(每毫升血液1.8毫克EDTA)外周血管。 各15毫升的血液添加到无菌的50ml管中,并用15毫升的RPMI稀释(稀释1:1),然后小心地慢慢加入溶于15…

Representative Results

这里所描述的密度梯度分离方法提供了从CLL患者的血液中分离的原代白血病细胞和未刺激的嗜中性粒细胞图1A表示密度梯度离心后获得的不同血液层(从上到下:血小板和血浆,白圈表示的单核细胞,密度梯度溶液,粒细胞和红细胞)。 图1B和1C分别示出嗜中性粒细胞(多叶形核细胞)和单核细胞之间的形态出现的差异。 <p class="jove_content" fo:kee…

Discussion

这里所描述的,有效的,简单,快速和廉价的协议为嗜中性粒细胞的人血液中分离,使用密度梯度离心的方法的高纯度和相同的步骤的单核细胞内也分离和回收。所述分离的细胞群是≥90%的纯度。

有几种方法可用于从人血液嗜中性粒细胞的隔离。这些包括类似的方法使用连续梯度11,12,或使用嗜中性粒细胞分离试剂盒由阳性免疫磁性选择期间的中性粒细胞是免疫磁?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Institute National du Cancer (INCa-DGOS-4664).

Materials

RPMI 1640  Gibco Invitrogen 21875-034
Fetal bovine serum (FBS) Gibco Invitrogen 10270-106
Phosphate-buffered saline (PBS contains calcium and magnesium) Gibco Invitrogen 14040-091
N-acetyl-L-alanyl-L-glutamine (L-Glutamine) Life technologies 25030-024
Penicillin streptomycin (Pen Strep) Life technologies 15140-122
Bruton's tyrosine kinase (Btk) inhibitor (Ibrutinib)  CliniSciences A3001
Vincristine  EG labo
BD Matrigel basement membrane matrix  BD Biosciences 354234 Put at 4 oC overnight before the day of the experiment
Red cell lysis buffer  BD Biosciences 555899
Ficoll (Pancoll) PAN Biotech P04-60500
Dextran  Sigma-Aldrich D8906
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418
Retinoic acid Sigma-Aldrich R2625
Bovine serum albumin (BSA) Sigma-Aldrich A7906
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich E5134
Sodium chloride (NaCl) Euromedex S3014
Annexing V-FLOUS staining kit  Roche 11 988 549 001
Kit RAL 555 Modified Giemsa staining kit Cosmos Biomedical CB361550-0000
LSRII flow cytometry BD Biosciences
Cytocentrifuge Thermo Scientific
Leica DMR-XA microscope Leica Microsystems
Cellometer Auto T4 Cell Viability Counter Nexcelom  Bioscience

References

  1. Gocheva, V., et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241-255 (2010).
  2. Grivennikov, S. I., Greten, F. R., Karin, M. Immunity, Inflammation, and Cancer. Cell. 140, 883-899 (2010).
  3. Mitchem, J. B., et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128-1141 (2013).
  4. DeNardo, D. G., et al. Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 1, 54-67 (2011).
  5. Di Carlo, E., et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 97, 339-345 (2001).
  6. Kumar, V., Sharma, A. Neutrophils: Cinderella of innate immune system. Int. Immunopharmacol. 10, 1325-1334 (2010).
  7. Mantovani, A., Cassatella, M. A., Costantini, C., Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519-531 (2011).
  8. Kelbaek, H. Sterile isolation of polymorphonuclear leukocytes from large blood volumes. J. Clin. Chem. Clin. Biochem. Z. FürKlin. Chem. Klin. Biochem. 23, 17-20 (1985).
  9. Aynaud, M. -. M., et al. Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A. J. Biol. Chem. 287, 39182-39192 (2012).
  10. Ziòłkowska, K., et al. Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens.Bioelectron. 40, 68-74 (2013).
  11. Eggleton, P., Gargan, R., Fisher, D. Rapid method for the isolation of neutrophils in high yield without the use of dextran or density gradient polymers. J. Immunol. Methods. 121, 105-113 (1989).
  12. Behnen, M., et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. Baltim.Md 1950. 193, 1954-1965 (2014).
  13. Hirsch, G., Lavoie-Lamoureux, A., Beauchamp, G., Lavoie, J. -. P. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids. PloS One. 7, 44606 (2012).
  14. Dorward, D. A., et al. Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J. Leukoc. Biol. 94, 193-202 (2013).
  15. Swamydas, M., Lionakis, M. S. Isolation, Purification and Labeling of Mouse Bone Marrow Neutrophils for Functional Studies and Adoptive Transfer Experiments. J Vis Exp. , e50586 (2013).
  16. Scaife, H., Woldehiwet, Z., Hart, C. A., Edwards, S. W. Anaplasmaphagocytophilum reduces neutrophil apoptosis in vivo. Infect. Immun. 71, 1995-2001 (2003).
  17. Maianski, N. A., Maianski, A. N., Kuijpers, T. W., Roos, D. Apoptosis of neutrophils. ActaHaematol. 111, 56-66 (2004).
  18. Dalton, W. T., et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood. 71, 242-247 (1988).
  19. Hogan, C., Kajita, M., Lawrenson, K., Fujita, Y. Interactions between normal and transformed epithelial cells: Their contributions to tumourigenesis. Int. J. Biochem. Cell Biol. 43, 496-503 (2011).
  20. Page, H., Flood, P., Reynaud, E. G. Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res. 352, 123-131 (2013).
  21. Mantovani, A. Macrophages, Neutrophils, and Cancer: A Double Edged Sword. New J. Sci. , 271940 (2014).
  22. Hanahan, D., Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 3, 309-322 (2012).
  23. Shojaei, F., Ferrara, N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res. 68, 5501-5504 (2008).
  24. Liang, J., et al. Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res Off J Am Assoc Cancer Res. 20, 187-198 (2014).
  25. Teramukai, S., et al. Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur. J. Cancer Oxf.Engl 1990. 45, 1950-1958 (2009).
  26. Zhu, Q., et al. The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5, 1295 (2014).

Play Video

Cite This Article
Hirz, T., Dumontet, C. Neutrophil Isolation and Analysis to Determine their Role in Lymphoma Cell Sensitivity to Therapeutic Agents. J. Vis. Exp. (109), e53846, doi:10.3791/53846 (2016).

View Video