Özet

脑膜炎奈瑟菌 诱导多能干细胞来源的脑内皮细胞的感染

Published: July 14, 2020
doi:

Özet

这里描述的方案强调了分化诱导多能干细胞衍生的脑样内皮细胞、用于感染的 脑膜炎奈瑟菌 的制备以及用于其他分子分析的样本收集的主要步骤。

Abstract

脑膜炎球菌性脑膜炎是一种危及生命的感染,当脑膜炎 奈瑟菌(脑膜炎球菌 ,Nm)可以通过穿透高度特化的脑内皮细胞 (BEC) 进入中枢神经系统 (CNS) 时发生。由于 Nm 是一种人类特异性病原体,由于缺乏强大的 体内 模型系统,因此对 Nm 和 BEC 之间的宿主-病原体相互作用的研究具有挑战性,并需要一种模拟天然 BEC 的基于人类的模型。与外周内皮细胞相比,BEC 具有更紧密的屏障特性,其特征是复杂的紧密连接和升高的跨内皮电阻 (TEER)。然而,许多 体外 模型,如原发性BEC和永生化BECs,在从天然神经微环境中移除后,要么缺乏或迅速失去其屏障特性。人类干细胞技术的最新进展已经开发出从诱导多能干细胞 (iPSC) 中提取类脑内皮细胞的方法,与其他体 人类模型相比,该方法具有更好的表型 BEC。使用 iPSC 衍生的 BEC (iPSC-BEC) 对 Nm-BEC 相互作用进行建模具有使用具有 BEC 屏障特性的人类细胞的好处,可用于检查屏障破坏、先天免疫激活和细菌相互作用。在这里,我们演示了除了细菌制备、感染和样本采集分析外,还如何从 iPSC 中衍生 iPSC-BEC。

Introduction

血脑屏障 (BBB) 和脑膜血脑脊液屏障 (mBCSFB) 是将循环与中枢神经系统 (CNS) 分开的极其紧密的细胞屏障,主要由高度特化的脑内皮细胞 (BEC) 组成1,2。BECs通过调节大脑内外的营养物质和废物来维持适当的大脑稳态,同时排除许多毒素、药物和病原体1,2。当血源性细菌能够与BECs相互作用并穿透BECs形成的屏障并引起炎症时,就会发生细菌性脑膜炎。脑膜炎奈瑟菌(Nm,脑膜炎球菌)是一种革兰氏阴性细菌,定植于10-40%健康个体的鼻咽部,但在某些情况下可引起严重的全身性疾病3。在受影响的个体中,Nm 可以进入血流,在那里它可以引起暴发性紫癜,并穿透 BEC 进入中枢神经系统,从而引起脑膜炎3。Nm 是全球细菌性脑膜炎的主要原因,尽管接种了疫苗,但仍是脑膜炎的主要原因 4.现代医疗干预,如抗生素治疗,使这些疾病得以生存,但那些患有脑膜炎的人往往会留下永久性的神经损伤5,6

先前的研究已经确定了有助于 Nm-BEC 相互作用的细菌因子和宿主信号转导 7,8,9,10,11。已鉴定的粘附蛋白和侵入蛋白,如混浊蛋白Opc和IV型菌毛,以及受体如CD147,已经在体外对各种BEC模型进行了研究,但这些模型缺乏许多定义的BBB特性7,9,11,12。对 Nm-BEC 相互作用的完全理解仍然难以捉摸,部分原因是无法利用体内模型、不完全的疫苗接种保护以及体外缺乏强大的人类 BEC 模型。

由于 BEC 的独特特性,在体外模拟 hBEC 一直具有挑战性。与外周内皮细胞相比,BEC 具有许多增强其屏障特性的表型,例如由于复杂的紧密连接而导致的高跨内皮电阻 (TEER)12。一旦从大脑微环境中移除,BECs就会迅速失去其屏障特性,从而限制了仅形成弱屏障的原代或永生化外模型的有用性12,13。Nm 感染的人类特异性、缺乏稳健的体内模型以及体外模拟人类 BEC 的挑战相结合,需要更好的模型来理解 Nm 和 BEC 之间复杂的宿主-病原相互作用。最近,使用模型人诱导多能干细胞 (iPSC) 技术,BEC 样细胞来源于 iPSC,可在体内更好地模拟 BEC 1213、1415iPSC-BECs是人类来源的,易于扩展,并且与原代或永生化对应物相比具有预期的BEC表型12,13,14,15。此外,我们和其他人已经证明 iPSC-BEC 可用于模拟中枢神经系统的各种疾病,例如宿主-病原体相互作用、亨廷顿舞蹈症和导致 Allan-Hurndon-Dudley 综合征的 MCT8 缺乏症 16,17,18,19,20,21.在这里,我们展示了如何从可再生的 iPSC 来源获得 iPSC-BEC,以及用 Nm 感染 iPSC-BEC 导致先天免疫反应的激活。我们认为,该模型可用于研究宿主-病原体相互作用,这在其他体外模型中无法概括,并且在检查与人类特定病原体(如Nm)的相互作用时特别有用。

Protocol

注:所有培养基/试剂制备、干细胞维护和分化步骤均改编自 Stebbins 等人 22。 1.制备iPSC培养和BEC分化所需的材料。 用于 IMR90-4 iPSC 培养的组织培养 (TC) 塑料基质包被将基底膜基质凝胶(例如基质胶)等分成2.5mg等分试样,并储存在-20°C。注意:在冰上处理基质凝胶和等分试样时,请快速工作,因为它在4°C以上形成凝胶,一旦凝固就不能分?…

Representative Results

这里描述的方案改编自Stebbins等人,并强调了将iPSC分化为具有BBB特性的脑样内皮细胞的过程,以及如何利用该模型进行使用具有Nm19,22的iPSC-BEC的感染研究。当分化得当时,iPSC-BEC表现出通过TEER测量的紧密屏障特性,通常大于2000 Ω·cm 2,并表达内皮标志物,如VE-钙粘蛋白和CD31(PECAM)(图1A\u2012C)。此外,它们…

Discussion

BECs和BBB的建模遇到了挑战,因为在体外,原发性和永生化的人BEC往往缺乏强大的屏障表型。人类干细胞技术的出现允许产生 iPSC 衍生的 BEC 样细胞,这些细胞保留了预期的标志性 BBB 表型,例如内皮标志物、紧密连接表达、屏障特性、对其他 CNS 细胞类型的反应和功能性外排转运蛋白 12、13、14、15、22、24 </su…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

L.M.E. 得到了 DFG 研究培训计划的支持,该计划GRK2157题为“用于研究人类病原体微生物感染的 3D 组织模型”,授予 A. S-U.B.J.K. 得到了亚历山大·冯·洪堡基金会的博士后奖学金的支持。此外,我们感谢 Lena Wolter 在培养物中生成 iPSC-BEC 方面的技术援助。

Materials

Accutase (1x) Sigma A6964 Enzymatic cell dissociation reagent
Acetic acid Sigma A6283
All-trans retinoic acid (RA) Sigma R2625
Anti-CD31 (PECAM-1) Thermo Scientific (Labvision) RB-10333
Anti-Claudin-5 Invitrogen 4C3C2
Anti-Glut-1 Thermo Scientific (Labvision) SPM498 (MA5-11315)
Anti-Occludin Invitrogen 33-1500
Anti-VE-cadherin Santa Cruz sc-52751
Anti-ZO-1 Invitrogen 33-9100
Bacto Proteose Peptone BD 211684
b-Mercaptoethanol Merck (Sigma-Aldrich) 805740
Cell culture plates and flasks Sarstedt
Centrifuge (Heraeus Megafuge 1.0R) Thermo Scientific
Class II biosafety cabinet Nuaire NU-437-400E
CO2 Incubator (DHD Autoflow CO2 Air-Jacketed Incubator) Nuaire
Collagen IV Sigma C5533
Columbia ager + 5 % sheep blood Biomerieux 43049
Costar Transwell polyester filters (12- or 24-well) Corning 3460, 3470
D(+)-Glucose Merck (Sigma-Aldrich) G8270
DAPI Invitrogen D1306
DMEM/F12 Gibco 31330-038
DMSO ROTH A994.1
Dulbecco's phosphate-buffered saline (DPBS) Gibco 21600-069
Epithelial Volt-Ohm Meter (Millicell ERS-2) with STX electrode Merck (Millipore) MERS00002
Fe(NO3)3 ROTH 5632.1
Fibronectin Sigma F1141
Fluoresence microscope (Eclipse Ti) Nikon
Hemacytometer (Neubauer) A. Hartenstein ZK06
Human basic fibroblast growth factor (bFGF) PeproTech 100-18B
Human Endothelial Serum Free Medium (hESFM) Gibco 11111-044
Inverted microscope (Wilovert) Hund (Will Wetzlar)
iPS(IMR90)-4 cells WiCell
Kellogg's supplement To prepare 110 ml of Kellogg's supplement, prepare 100 ml of 4 g/ml glucose, 0.1 g/ml glutamine, and 0.2 mg/ml thiamine pyrophosphate and 10 ml of 5 mg/ml Fe(NO3)3 and combine the solutions. Filter sterilize and store aliquoted at -20 °C.
Knockout serum replacement (KOSR) Gibco 10828-028
L-glutamine (GlutaMAX) Invitrogen 35050-038
LunaScript RT SuperMix Kit NEB E3010L cDNA synthesis kit
Matrigel Matrix Corning 354230
Methanol ROTH 4627.5
MgCl2 ROTH KK36.1
Micropipettes (Research Plus) Eppendorf
NaHCO3 ROTH 6329
Nonessential amino acids (NEAA) Gibco 11140-035
NucleoSpin RNA isolation kit Machery-Nagel 740955 RNA isolation kit
Pipette boy (Accu-Jet Pro) Brand
Platelet poor plasma-derived serum, bovine (PDS) Fisher 50-443-029
PowerUp SYBR Green Master Mix Applied Biosystems A25742 qPCR master mix
qPCR film (MicroAmp Optical Adhesive Film) Applied Biosystems 4211971
qPCR plates (MicroAmp Fast 96-well) Applied Biosystems 4346907
ROCK inhibitor, Y27632 dihydrochloride Tocris 1254
RT-PCR thermo cycler (StepOnePlus) Applied Biosystems 4376600
Serological pipettes Sarstedt
StemFlex basal medium + 50x StemFlex supplement Gibco A3349401 Stem-cell maintenance medium
Swinging Bucket Rotor (Heraeus #2704) Thermo Scientific
Thiamine pyrophosphate Sigma C8754-5G
Trypan Blue Solution, 0.4% Gibco 15250061
Versene Gibco 15040-033 Non-enzymatic cell dissociation reagent (EDTA)

Referanslar

  1. Rua, R., McGavern, D. B. Advances in Meningeal Immunity. Trends in Molecular Medicine. 24 (6), 542-559 (2018).
  2. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., Begley, D. J. Structure and function of the blood-brain barrier. Neurobiology of Disease. 37 (1), 13-25 (2010).
  3. Rouphael, N. G., Stephens, D. S. Neisseria meningitidis: Biology, microbiology, and epidemiology. Methods in Molecular Biology. , (2012).
  4. Stephens, D. S., Greenwood, B., Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 369 (9580), 2196-2210 (2007).
  5. Le Guennec, L., Coureuil, M., Nassif, X., Bourdoulous, S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cellular Microbiology. , (2020).
  6. Doran, K. S., et al. Host-pathogen interactions in bacterial meningitis. Acta Neuropathologica. 131 (2), 185-209 (2016).
  7. Cunha, C. S. E., Griffiths, N. J., Virji, M. Neisseria meningitidis opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathogens. , (2010).
  8. Coureuil, M., et al. Meningococcus hijacks a β2-adrenoceptor/β-arrestin pathway to cross brain microvasculature endothelium. Cell. 143 (7), 1149-1160 (2010).
  9. Bernard, S. C., et al. Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nature Medicine. 20 (7), 725-731 (2014).
  10. Slanina, H., Hebling, S., Hauck, C. R., Schubert-Unkmeir, A. Cell invasion by neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS ONE. 7 (6), (2012).
  11. Unkmeir, A., et al. Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Molecular Microbiology. 46 (4), 933-946 (2002).
  12. Helms, H. C., et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of Cerebral Blood Flow and Metabolism. , (2015).
  13. Lippmann, E. S., et al. Derivation of Blood-Brain Barrier Endothelial Cells from Human Pluripotent Stem Cells. Nature Biotechnology. 30 (8), 783-791 (2012).
  14. Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P., Shusta, E. V. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Reports. 4, 4160 (2014).
  15. Hollmann, E. K., Bailey, A. K., Potharazu, A. V., Neely, M. D., Bowman, A. B., Lippmann, E. S. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids and Barriers of the CNS. , (2017).
  16. Kim, B. J., et al. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. mSphere. , (2017).
  17. Kim, B. J., et al. Streptococcus agalactiae disrupts P-glycoprotein function in brain endothelial cells. Fluids and Barriers of the CNS. 16 (1), 26 (2019).
  18. Kim, B. J., Shusta, E. V., Doran, K. S. Past and Current Perspectives in Modeling Bacteria and Blood–Brain Barrier Interactions. Frontiers in Microbiology. , (2019).
  19. Martins Gomes, S. F., et al. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Frontiers in Microbiology. , (2019).
  20. Vatine, G. D., et al. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell. , (2016).
  21. Lim, R. G., et al. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Reports. 19 (7), 1365-1377 (2017).
  22. Stebbins, M. J., Wilson, H. K., Canfield, S. G., Qian, T., Palecek, S. P., Shusta, E. V. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 101, 93-102 (2016).
  23. Neal, E. H., et al. A Simplified, Fully Defined Differentiation Scheme for Producing Blood-Brain Barrier Endothelial Cells from Human iPSCs. Stem Cell Reports. 12 (6), 1380-1388 (2019).
  24. Wilson, H. K., Canfield, S. G., Hjortness, M. K., Palecek, S. P., Shusta, E. V. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids and Barriers of the CNS. , (2015).
  25. Wilson, H. K., Faubion, M. G., Hjortness, M. K., Palecek, S. P., Shusta, E. V. Cryopreservation of brain endothelial cells derived from human induced pluripotent stem cells is enhanced by rho-associated coiled coil-containing kinase inhibition. Tissue Engineering – Part C: Methods. , (2016).
  26. Qian, T., et al. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Science Advances. , (2017).
  27. Sances, S., et al. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development. Stem Cell Reports. , (2018).
  28. Canfield, S. G., et al. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. Journal of Neurochemistry. , (2017).
  29. Kurosawa, H. Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells. Journal of Bioscience and Bioengineering. , (2012).
  30. Schubert-Unkmeir, A., Sokolova, O., Panzner, U., Eigenthaler, M., Frosch, M. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infection and Immunity. 75 (2), 899-914 (2007).
  31. Sokolova, O., et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: Role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cellular Microbiology. 6 (12), 1153-1166 (2004).
  32. Alimonti, J. B., et al. Zika virus crosses an in vitro human blood brain barrier model. Fluids and Barriers of the CNS. , (2018).
  33. Kim, B. J., Schubert-unkmeir, A. In vitro Models for Studying the Interaction of Neisseria meningitidis with Human Brain Endothelial Cells. Neisseria meningitidis: Methods and Protocols, Methods in Molecular Biology. 1969, 135-148 (2019).
  34. Kim, B. J., et al. Bacterial induction of Snail1 contributes to blood-brain barrier disruption. Journal of Clinical Investigation. 125 (6), 2473-2483 (2015).

Play Video

Bu Makaleden Alıntı Yapın
Endres, L. M., Hathcock, S. F., Schubert-Unkmeir, A., Kim, B. J. Neisseria meningitidis Infection of Induced Pluripotent Stem-Cell Derived Brain Endothelial Cells. J. Vis. Exp. (161), e61400, doi:10.3791/61400 (2020).

View Video