Bu çalışma, literatürde genellikle geniş bir şekilde tanımlanan silika substratlar üzerine lamine edilmiş bileşiklerin emprenye edilmesi veya aşılanması için standartlaştırılmış tekniklerin geliştirilmesini kolaylaştırmayı amaçlamaktadır. Spesifik miktarlarda çözücü, substrat, aminler ve diğer önemli deneysel parametrelerin değerleri ayrıntılı olarak tartışılacaktır.
Son zamanlarda, noktasal kaynak veya doğrudan hava yakalama (DAC) yöntemleri için karbon yakalama malzemelerinin kullanılması yoluylaCO2 emisyonlarının azaltılması veya hafifletilmesi için önemli bir çaba sarf edilmiştir. Bu çalışma, DAC için amin ile işlevselleştirilmiş CO2 adsorbanlarına odaklanmaktadır. Bu malzemeler, düşük rejenerasyon enerji tüketimine ve yüksek adsorpsiyon kapasitesine sahip oldukları için CO2 giderimi için umut vaat etmektedir. Amin türlerinin gözenekli bir substrata dahil edilmesi, amin türlerinin CO2’ye afinitesinin avantajlarını, gözenekli substratın büyük gözenek hacimleri ve yüzey alanları ile birleştirir. Amin türlerinin seçimine, malzeme desteğine ve hazırlama yöntemine bağlı olarak amin bazlı CO2 sorbentlerini hazırlamak için yaygın olarak kullanılan üç yöntem vardır. Bu yöntemler emprenye, aşılama veya kimyasal sentezdir. Silika, ayarlanabilir gözenek boyutu, nem toleransı, sıcaklık kararlılığı ve DAC uygulamaları için düşük konsantrasyonlardaCO2’yi adsorbe etme kabiliyeti nedeniyle yaygın bir alt tabaka malzemesi seçimidir. Hem emprenye edilmiş hem de aşılanmış amin-silika kompozitlerin tipik sentetik prosedürleri ve birincil özellikleri burada açıklanmaktadır.
Son birkaç on yıldaki antropojenik CO 2 emisyonları, sera gazı etkisini ve dolayısıyla ilgili iklim değişikliğiniyönlendiren ana faktör olarak yaygın bir şekilde yer almaktadır 1,2,3,4. CO2 yakalama için iki genel yöntem vardır, nokta kaynağı ve doğrudan hava yakalama. 50 yılı aşkın bir süredir,CO2 emisyonlarını azaltmak için endüstride nokta kaynak yakalama için ıslak fırçalama CO2 yakalama teknolojileri kullanılmaktadır 5,6. Bu teknolojiler, kuru koşullar altında karbamatlar oluşturmak için CO2 ile reaksiyona giren sıvı fazlı aminlere ve su varlığında hidrojen karbonatlaradayanmaktadır 7,8, bkz. Şekil 1. Karbon yakalama ve depolamanın büyük nokta (endüstriyel) kaynaklarda kullanılmasının ana nedeni, büyük miktarlarda CO2’nin daha fazla salınmasını önlemek, böylece atmosferdeki toplamCO2 konsantrasyonu üzerinde nötr bir etkiye sahip olmaktır. Bununla birlikte, nokta kaynaklı karbon yakalama sistemleri, ekipman korozyonu, solvent bozulması ve rejenerasyon için yüksek enerji gereksinimleri gibi çeşitli dezavantajlardan muzdariptir9. Doğrudan hava yakalama (DAC), emisyon azaltımının ötesine geçer veCO2’nin atmosferden uzaklaştırılmasını kolaylaştırabilir. Bu mevcut CO2’nin ortadan kaldırılması, devam eden iklim değişikliğini sınırlamak için gereklidir. DAC gelişmekte olan bir metodolojidir ve atmosferik koşullarda (400 ila 420 ppm) düşük konsantrasyonlardaCO2 gidermenin zorluklarını ele almalı, çeşitli farklı çevresel koşullarda çalışmalı ve birçok kez yeniden kullanılabilen uygun maliyetli malzemelere olan ihtiyacı ele almalıdır 1,2,3. DAC’nin benimsenmesini hızlandıracak ve ekonomik fizibilitesini artıracak bu gereksinimleri karşılayan malzemeleri belirlemek için önemli çalışmalara ihtiyaç vardır. En önemlisi, kıyaslama malzemelerinin geliştirilmesi için gerekli olan kritik ölçüm parametreleri konusunda topluluk fikir birliğinin oluşturulması gerekmektedir.
Şekil 1: Beklenen sıvı amin adsorban CO2 yakalama mekanizmasının şeması. Üst reaksiyon kuru koşullardadır ve alt reaksiyon nem varlığındadır. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Bu dezavantajları gidermek için, yeni gözenekli malzeme teknolojisinin önemli ölçüde araştırılması ve geliştirilmesi, DAC için yakalama malzemeleri veya substratlar olarak kullanılma potansiyeline sahip çok çeşitli umut verici malzemelerle sonuçlanmıştır. Bu tür malzemelerin bazı örnekleri arasında mezogözenekli silika türleri 10,11,12,13, zeolitler 14,15, aktif karbon 16,17 ve metal-organik çerçeveler 18 bulunur. Birçok katı destekli amin adsorbanı ayrıca suya karşı daha yüksek bir tolerans gösterir, bu da DAC yaklaşımları yoluylaCO2 gideriminde hayati bir husustur. DAC uygulamaları için araştırmacılar ıslak/kuru çevre koşullarını, sıcak/soğuk sıcaklıkları ve genel seyreltik atmosferikCO2 konsantrasyonunu dikkate almalıdır. Çeşitli alt tabaka malzemeleri arasında silika, ayarlanabilir gözenek boyutları, yüzey işlevselliği ve geniş yüzey alanı 1,2,3 nedeniyle yaygın olarak kullanılmaktadır. Hem emprenye edilmiş hem de aşılanmış amin-silika kompozitlerin tipik sentetik prosedürleri ve temel özellikleri bu çalışmada açıklanmaktadır (Şekil 2). Malzemenin hem substrat hem de amin ile yerinde yapıldığı doğrudan sentez, yaygın olarak kullanılan başka bir metodolojidir2.
Şekil 2: Emprenye işleminin şematik gösterimleri. PEI ve silika substratın difüzyon yoluyla metanol içinde karıştırılması (üstte) ve kovalent bağlama yoluyla aşılanmış amin-silika kompozitleri (altta). Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Emprenye, bir aminin bir yüzeye, bu durumda gözenekli bir silika ortamına, van der Waals kuvvetleri ve amin ile silika yüzeyi arasındaki hidrojen bağı yoluyla fiziksel olarak adsorbe edildiği bir yöntemdir19, bkz. Şekil 2. Etanol ve metanol gibi çözücüler, moleküllerin substrat malzemesinin gözenekli yapısına difüzyonunu teşvik etmek için yaygın olarak kullanılır. Çözelti ayrıca yüksek molar kütleli poliaminlerin çözünürlüğünü arttırmak için ısıtılabilir, böylece gözenekler içindeki amin penetrasyonunun homojenliği arttırılabilir. Emprenye edilmiş malzemeler söz konusu olduğunda, bir silika substrata verilen amin miktarı, aminin başlangıç miktarı ve substratın yüzey alanı ile belirlenir. Eklenen amin miktarı, silika substratının mevcut yüzey alanını aşarsa, amin türleri yüzeyinde topaklaşacaktır. Bu yığılma kolayca görülebilir, çünkü emprenye edilmiş malzeme, beklenen beyaz ve pudramsı görünümden ziyade genellikle sarı olan jel benzeri bir kaplamaya sahip gibi görünecektir1. Birçok amin bazlı katı adsorban türü arasında, polietilenimin (PEI) ve tetraetilen pentamin (TEPA), yüksek stabiliteleri ve yüksek nitrojen içeriği20 nedeniyle en yaygın kullanılanlardır. Fiziksel olarak emprenye edilmiş sistemler için, aminin teorik yükleme miktarı, substratın önceden ağırlıklandırılmış miktarlarından ve aminin yoğunluğundan hesaplanabilir. Fiziksel emprenye işleminin bariz avantajı, onu hazırlamak için basit sentez prosedüründe ve ayrıca silika substratının yüksek gözenekliliği nedeniyle büyük bir amin içeriği potansiyelinde yatmaktadır. Tersine, silika içindeki aminin stabilitesi sınırlıdır çünkü amin ve silika desteği arasında kovalent bağ yoktur. Bu nedenle, ısı veya buhar yoluyla birden fazla CO2 alımı ve rejenerasyon döngüsünden sonra, amin gözeneklerden sızabilir. Bu dezavantajlara rağmen, DAC için bu tür malzemelerin uygulanması, CO2’nin atmosferden uzaklaştırılması için büyük umut vaat ediyor.
DAC materyallerinin hazırlanması için başka bir seçenek aşılamadır. Aşılama, Şekil 2’de gösterildiği gibi, aminlerin kimyasal bir reaksiyon yoluyla gözenekli bir silika substrat üzerinde hareketsiz hale getirildiği bir yöntemdir. Bu reaksiyon, bir aminosilanın yüzeyin silanol fonksiyonel grubu ile reaksiyona sokulmasıyla ilerler ve kovalent bir bağ ile sonuçlanır. Bu nedenle, silika substratın yüzeyindeki fonksiyonel grupların sayısı, aşılanmış amin yoğunluğunu21,22 etkiler. Amin emdirilmiş adsorbanlarla karşılaştırıldığında, kimyasal aşılama yöntemleri, esas olarak düşük amin yüklemesi21 nedeniyle daha düşükCO2 adsorpsiyon kapasitesine sahiptir. Tersine, kimyasal olarak aşılanmış aminler, kovalent olarak bağlı yapıları nedeniyle artan termal stabiliteye sahiptir. Bu stabilite, adsorbanlar (aşılı silika gibi) malzeme ve maliyetten tasarruf etmek için yeniden kullanım üzere yakalanan CO2’yi uzaklaştırmak için ısıtılıp basınçlandırıldığından, malzemenin rejenerasyonunda faydalı olabilir. Tipik bir sentez prosedüründe, mezogözenekli silika substratı bir çözücü (örneğin susuz toluen) içinde dağıtılır ve bunu daha sonra aminosilanların eklenmesi takip eder. Elde edilen numune daha sonra reaksiyona girmemiş aminosilanları uzaklaştırmak için yıkanır. Aminosilan yoğunluğundaki iyileşmelerin, gözenek boyutu23’ü genişletmek için özellikle SBA-15 ile su ilavesi yoluyla elde edildiği bildirilmektedir. Burada açıklanacak olan aşılama prosedürü, neme duyarlı teknikler kullanır. Bu nedenle ilave su kullanılmayacaktır. DAC için aşılanmış aminosilan materyallerinin uygulanması, CO2 adsorpsiyon ve desorpsiyon işlemleri sırasında beklenen stabiliteleri nedeniyle umut vericidir. Bununla birlikte, bu metodolojinin en büyük dezavantajları, bu malzemelerin karmaşık reaksiyonlarını / hazırlanmasını, maliyetin artmasına ve genel olarak düşük CO2 adsorpsiyon kapasitelerini içerir, bu da daha büyük miktarların gerekli olduğu anlamına gelir.
Genel olarak, önceki birçok çalışmanın sonuçları, substratın yapısının ve aminle ilgili modifikasyonun, bu malzemeleri tam olarak karakterize etmek için transmisyon elektron mikroskobu (TEM) ve yarı elastik nötron saçılımı (QENS) gibi teknikleri kullanan özel çalışmalarla adsorpsiyon performansı üzerinde önemli bir etkiye sahip olduğunu göstermektedir24,25. Başka bir deyişle, substrat malzemesinin yapısal özellikleri (örneğin, gözeneklilik ve yüzey alanı) amin yüklemesini belirler, bu nedenle bu parametrelerin arttırılması CO2 kapasitesini24,25 iyileştirebilir. Alt tabaka malzemelerinin ve hazırlama süreçlerinin optimizasyonu ve tasarımına yönelik devam eden araştırmalar, DAC için yüksek performanslı adsorbanların geliştirilmesi için kritik öneme sahiptir. Bu çalışmanın amacı, sentetik tekniklerin daha iyi şeffaflığını kolaylaştırma umuduyla emprenye ve aşılanmış amin sentezi konusunda rehberlik sağlamaktır. Literatürde, çözücü, substrat ve aminlerin miktarlarına ilişkin spesifik ayrıntılar her zaman açıklanmamıştır, bu da deneysel yükleme miktarları ile amin-silika kompozitlerin kantitatif ölçümleri arasındaki korelasyonun anlaşılmasını zorlaştırmaktadır. Bu tür karşılaştırmaları daha iyi kolaylaştırmak için tam yükleme miktarları ve deneysel prosedürlerin ayrıntılı bir açıklaması burada sağlanacaktır.
Burada açıklanan yöntemler, emprenye edilmiş ve aşılanmış amin silika-kompozit adsorbanların hazırlanması için bir protokol sağlamayı amaçlamaktadır. Belgelediğimiz prosedürler, literatürde bildirilen tekniklerin ve laboratuvarımızda rafine edilen tekniklerin gözden geçirilmesine dayanmaktadır. 1,2,3. Bu malzemelerin hazırlanması, atmosferde (doğrudan hava yakalama) veya endüstriyel işlemlerde (nokta…
The authors have nothing to disclose.
Charlotte M. Wentz, NIST Ödülü # 70NANB8H165 aracılığıyla fon sağlamak istiyor. Zois Tsinas, NIST Award # 70NANB22H140 aracılığıyla fon sağlamak istiyor.
Anhydrous methanol | Sigma-Aldrich | 322415 | Does not come with sure-seal |
Anhydrous toluene | Sigma-Aldrich | 244511 | Comes with sure-seal |
Ceramic Stirring Hot Plate | NA | NA | The size, watage, and thermal capabilities of the stirr plate will differ depending on individual lab facilities. |
Fourier Transform Infrared Spectroscopy (FTIR) | Nicolet i550 series spectrometer | NA | Run on OMNIC standard software |
Gastight syringe | NA | NA | As long as the gas tight syringe has a PTFE plunger and luer tip, is suited for air sensitive technique and can be used in this protocol. |
Glass vial | NA | NA | As long as the vial is made if borosilicate glass and has a screw based cap the brand name, size, or general shape does not matter for the protocol. |
MCM-41 silica | ACS Material | MSM41A01 | Cas no. 7631-86-9 |
Metal needle | NA | NA | Syringe needles need to be stainless steel. It is recommended to determine length and outerdiameter of needle by what will be transferred using the gas tight syringe. For large quantities of liquid a larger outer diameter will improve transfer rates. |
N’-(3-trimethylsilyl propyl) diethyleneamine (DAS) | Sigma-Aldrich | 104884 | Comes with sure-seal |
Polyethyleneimine (PEI) | Sigma-Aldrich | 408719 | Does not come with sure-seal |
Schlenk round bottom flask | ChemGlass AirFree | NA | As long as the flask is suited for high pressure and temperture but the brand name, size, or general shape does not matter for the protocol |
Thermogravemetric Anlysis (TGA) | TA Advantage | NA | 550 series from Waters and TA Instruments |