Summary

安格曼综合征小鼠模型的行为表征

Published: October 20, 2023
doi:

Summary

本手稿介绍了一组高度可重复的行为测试,以验证Angelman综合征小鼠模型。

Abstract

本手稿描述了一系列行为测试,可用于表征已建立的AS小鼠模型中的Angelman综合征(AS)样表型。我们使用旋转学习范式、详细的步态分析和筑巢测试来检测和表征动物运动障碍。我们在空旷的场地和升高加上迷宫测试中测试动物的情绪,以及在尾部悬架测试中的影响。当AS小鼠在露天测试中进行测试时,应仔细解释结果,因为运动功能障碍会影响迷宫中的小鼠行为并改变活动评分。

所提出的行为测试的可重复性和有效性已经在具有不同敲除变体的几个独立的Uba3a小鼠系中得到了验证,使这组测试成为AS研究中出色的验证工具。具有相关结构和面部有效性的模型将值得进一步研究,以阐明疾病的病理生理学,并批准因果治疗的发展。

Introduction

安格曼综合征(AS)是一种罕见的神经发育疾病。AS最常见的遗传起源是母源性染色体的15q11-q13区域大量缺失,这在近74%的患者中发现1。该区域的缺失导致UBE3A的丢失,UBE3A是编码E3泛素连接酶的AS的主要致病基因。神经元中UBE3A基因的父系等位基因在称为印记的过程中被沉默。因此,该基因的父系印记仅允许母体在中枢神经系统(CNS)中表达2。因此,母源性染色体中的UBE3A基因缺失导致AS症状的发展。在人类中,AS在6个月左右出现,发育迟缓持续到所有发育阶段,并在受影响的个体中导致严重的衰弱症状3,4。该疾病的核心症状包括精细和粗大运动技能的缺乏,包括生涩的共济失调步态、严重的言语障碍和智力障碍。大约80%的AS患者还患有睡眠障碍和癫痫。迄今为止,唯一可用的治疗方法是对症药物,可减少癫痫发作并改善睡眠质量1。因此,开发具有可重复行为表型的稳健动物模型以及精细的表型分析对于阐明该疾病的病理生理机制和发现有效的药物和治疗方法至关重要。

影响中枢神经系统的人类疾病的复杂性要求模式生物具有可比的基因组、生理和行为。小鼠作为模式生物很受欢迎,因为它们的繁殖周期短,体积小,DNA修饰相对容易。1984年,Paul Willner提出了三个基本的疾病模型验证标准:结构,面部和预测有效性,用于确定模型的值5。简单地说,构建有效性反映了负责疾病发展的生物学机制,面部有效性概括了其症状,预测有效性描述了对治疗药物的模型反应。

为了坚持上述原则,我们选择了最常见的遗传病因,即包括UBE3A基因在内的母体15q11.2-13q位点的大缺失,以创建AS模型小鼠。我们使用CRISPR / Cas9技术删除了来自C57BL / 6N背景6的小鼠中跨越整个UBE3A基因的76,225 bp长区域,包括该基因的编码和非编码元件。然后我们培育动物以获得UBE3A + / −杂合小鼠。为了验证模型的面部,我们使用来自UBE3A + / – 雌性和野生型雄性的杂交动物来获得UBE3A + / – 后代(菌株命名为C57BL / 6NCrl-UBE3A / Ph,后来被分配为UBE3A mGenedel / +)并对照同窝。我们测试了他们的精细和粗大运动技能、情绪和情感,以概括核心AS症状。在之前的一篇文章中,我们还评估了动物的认知功能,因为AS患者也患有智力障碍6。然而,我们在UBE3AmGenedel / +小鼠中没有发现认知障碍,可能是由于测试动物的年龄很小7。后来对大约18周大的老年动物的检查显示,在位置偏好范式的逆转学习过程中,行为灵活性存在缺陷。但是,用于此分析的设备的复杂性需要一个单独的方法模块,此处不包括。

这里介绍的行为测试属于遗传研究中常见的表型工具,这要归功于它们的高预测价值和足够的构建有效性8,9,10我们使用这些测试通过以可重复的、与年龄无关的方式概括人类疾病的核心症状来验证AS的小鼠模型。在高架加迷宫和露天测试中评估动物的情绪。这两种测试都是基于接近-避免冲突,其中动物探索新环境以寻找食物、住所或交配机会,同时避免引起焦虑的隔间11。此外,开放现场测试用于测试小鼠的运动活动8。尾部悬架试验广泛用于抑郁症研究,以筛选小鼠敲除模型中新的抗抑郁药物或抑郁样表型12。该测试评估动物在不可避免的情况下随着时间的推移而产生的绝望。分别在旋转和DigiGait上测定运动学习和详细的步态特征。加速杆上的动物耐力表征其平衡和运动协调技能,而对小鼠步数模式的详细分析是对与许多神经生成性运动障碍相关的神经肌肉损伤的敏感评估13,14,15。巢穴撕碎测试是检测啮齿动物冲动行为的标准方法的一部分,并且由于它利用了自然的啮齿动物建筑行为,因此它表明了动物的健康状况16,17

实验组的规模是妥协的结果,以满足3R规则要求和有效利用群体育种性能。然而,为了获得统计功效,由于建立了足够数量的育种对,这些群体不少于10个个体。不幸的是,育种性能并不总是导致足够数量的动物。

Protocol

本研究中使用的所有动物和实验都经过伦理审查,并按照欧洲指令2010/63 / EU进行。该研究得到了捷克中央动物福利委员会的批准。将小鼠饲养在单独通风的笼子中,并保持在22±2°C的恒定温度下,光照/黑暗循环12小时。随意向小鼠提供食物 和水。将小鼠饲养在每个笼子中,每只动物三到六只。在测试之前,除称重外未进行任何其他处理。有关本协议中使用的所有材料和设备的详细信息,请?…

Representative Results

高架加迷宫和露天测试EPM和OF测试使用啮齿动物的自然倾向来探索新环境18,19。探索受到接近-避免冲突的支配,啮齿动物在探索新环境和避免可能的危险之间做出选择。动物探索未知的地方,寻找庇护所、社会接触或觅食。然而,新的地方可能涉及风险因素,如捕食者或竞争对手。OF 测试和 EPM 都由安全和危险隔间组成 – OF 测试中的外围?…

Discussion

在不同鼠菌株中创建的AS模型通常通过动物情绪状态,运动功能和认知能力的测试进行验证,以促进与人类症状的比较31,32。AS模型中的运动缺陷是实验室中最一致的发现,其次是突变体的情绪状态不变和筑巢困难31,32,33。相比之下,认知障碍要么轻微,要么不存在7,31,33。<sup class="xref…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了捷克科学院RVO 68378050,LM2018126 MEYS CR提供的捷克表型基因组学中心,OP RDE CZ.02.1.01 / 0.0 / 0.0/16_013 / 0001789(捷克表型基因组学中心的升级:MEYS和ESIF向翻译研究发展),OP rde CZ.02.1.01 / 0.0 / 0.0 / 18_046 / 0015861(MEYS和ESIF提供的CCP基础设施升级II)和OP RDI CZ.1.05 / 2.1.00 / 19.0395(MEYS和ERDF转基因模型的更高质量和容量)。此外,这项研究还得到了捷克共和国(https://asgent.org/)非政府组织“基因治疗协会(ASGENT)”和捷克共和国教育、青年和体育部提供的捷克表型基因组学中心的资助LM2023036。

Materials

Cages, individually ventilated Techniplast
DigiGait Mouse Specifics, Inc., 2 Central Street Level
Unit 110
Framingham, MA 01701, USA
Equipment was tendered, no catalogue  number was provided, nor could be find on company's web site Detailed analysis of mouse gait, hardware and software provided. 
FDA Nestlet squares Datesand Ltd., 7 Horsfield Way, Bredbury, Stockport SK6, UK Material was bought from Velaz vendor via direct email request. Velaz do not provide any catalogue no. Cotton nestlets for nest building test. Nestlet discription: 2-3 g each, with diameter around 5 x 5 x 0.5cm.
Mouse chow Altramion
Rotarod TSE Systems GmbH, Barbara-McClintock-Str.4
12489 Berlin, Germany
Equipment was tendered, no catalogue  number was provided, nor could be find on company's web site Rotarod for 5 mice, hardware and software provided. Drum dimensions: Diameter: 30 mm, width per lane: 50 mm, falling distance 147 mm.
Tail Suspension Test Bioseb, In Vivo Research Instruments, 13845 Vitrolles
FRANCE
Reference: BIO-TST5 Fully automated equipment for immobility time evaluation of 3 mice hanged by tail, hardware and software provided
Transpore medical tape Medical M, Ltd. P-AIRO1291 The tape used to attach an animal to the hook by its tail.
Viewer – Video Tracking System Biobserve GmbH, Wilhelmstr. 23 A
53111 Bonn, Germany
Equipment with software were tendered, no catalogue  number was provided, nor could be find on company's web site Software with custom made hardware: maze, IR base, IR sensitive cameras. Custom-made OF dimensions: 42 x 42 cm area, 49 cm high wall, central zone area: 39 cm2. A custom-made EPM was elevated 50 cm above the floor, with an open arm 79 cm long,  9 cm wide, and closed arm 77 cm long, 7.6 cm wide. 

References

  1. Kalsner, L., Chamberlain, S. J. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatric Clinics of North America. 62 (3), 587-606 (2015).
  2. Yamasaki, K., et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Human Molecular Genetics. 12 (8), 837-847 (2003).
  3. Clayton-Smith, J., Laan, L. Angelman syndrome: a review of the clinical and genetic aspects. Journal of Medical Genetics. 40 (2), 87-95 (2003).
  4. Jolleff, N., Ryan, M. M. Communication development in Angelman’s syndrome. Archives of Disease in Childhood. 69 (1), 148-150 (1993).
  5. Willner, P. The validity of animal models of depression. Psychopharmacology. 83 (1), 1-16 (1984).
  6. Syding, L. A., et al. Generation and characterization of a novel Angelman syndrome mouse model with a full deletion of the Ube3a gene. Cells. 11 (18), 2815 (2022).
  7. Huang, H. -. S., et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behavioural Brain Research. 243, 79-90 (2013).
  8. Choleris, E., Thomas, A. W., Kavaliers, M., Prato, F. S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neuroscience and Biobehavioral Reviews. 25 (3), 235-260 (2001).
  9. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews. 29 (4-5), 571-625 (2005).
  10. Walf, A. A., Frye, C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols. 2 (2), 322-328 (2007).
  11. Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research. 134 (1-2), 49-57 (2002).
  12. Yan, H. -. C., Cao, X., Das, M., Zhu, X. -. H., Gao, T. -. M. Behavioral animal models of depression. Neuroscience Bulletin. 26 (4), 327-337 (2010).
  13. Preisig, D. F., et al. High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behavioural Brain Research. 311, 340-353 (2016).
  14. Knippenberg, S., Thau, N., Dengler, R., Petri, S. Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behavioural Brain Research. 213 (1), 82-87 (2010).
  15. Farr, T. D., Liu, L., Colwell, K. L., Whishaw, I. Q., Metz, G. A. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. Journal of Neuroscience Methods. 153 (1), 104-113 (2006).
  16. Jirkof, P. Burrowing and nest building behavior as indicators of well-being in mice. Journal of Neuroscience Methods. 234, 139-146 (2014).
  17. Wulaer, B., et al. Repetitive and compulsive-like behaviors lead to cognitive dysfunction in Disc1Δ2-3/Δ2-3 mice. Genes, Brain, and Behavior. 17 (8), 12478 (2018).
  18. Glickman, S. E., Hartz, K. E. Exploratory behavior in several species of rodents. Journal of Comparative and Physiological Psychology. 58, 101-104 (1964).
  19. La-Vu, M., Tobias, B. C., Schuette, P. J., Adhikari, A. To approach or avoid: an introductory overview of the study of anxiety using rodent assays. Frontiers in Behavioral Neuroscience. 14, 145 (2020).
  20. Karolewicz, B., Paul, I. A. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. European Journal of Pharmacology. 415 (2-3), 197-201 (2001).
  21. Liu, X., Gershenfeld, H. K. Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biological Psychiatry. 49 (7), 575-581 (2001).
  22. Dunham, N. W., Miya, T. S. A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association. 46 (3), 208-209 (1957).
  23. Dorman, C. W., Krug, H. E., Frizelle, S. P., Funkenbusch, S., Mahowald, M. L. A comparison of DigiGait and TreadScan imaging systems: assessment of pain using gait analysis in murine monoarthritis. Journal of Pain Research. 7, 25-35 (2013).
  24. Stroobants, S., Gantois, I., Pooters, T., D’Hooge, R. Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behavioural Brain Research. 241, 32-37 (2013).
  25. Vandeputte, C., et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neuroscience. 11, 92 (2010).
  26. Amende, I., et al. Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. Journal of Neuroengineering and Rehabilitation. 2, 20 (2005).
  27. Hampton, T. G., et al. Gait disturbances in dystrophic hamsters. Journal of Biomedicine & Biotechnology. 2011, 235354 (2011).
  28. Vinsant, S., et al. Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part I, background and methods. Brain and Behavior. 3 (4), 335-350 (2013).
  29. Li, X., Morrow, D., Witkin, J. M. Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sciences. 78 (17), 1933-1939 (2006).
  30. Murphy, M., et al. Chronic adolescent Δ9-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis and Cannabinoid Research. 2 (1), 235-246 (2017).
  31. Sonzogni, M., et al. A behavioral test battery for mouse models of Angelman syndrome: A powerful tool for testing drugs and novel Ube3a mutants. Molecular Autism. 9, 47 (2018).
  32. Dodge, A., et al. Generation of a novel rat model of Angelman syndrome with a complete Ube3a gene deletion. Autism Research. 13 (3), 397-409 (2020).
  33. Born, H. A., et al. Strain-dependence of the Angelman syndrome phenotypes in Ube3a maternal deficiency mice. Scientific Reports. 7 (1), 8451 (2017).
  34. File, S. E., Mabbutt, P. S., Hitchcott, P. K. Characterisation of the phenomenon of "one-trial tolerance" to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology. 102 (1), 98-101 (1990).
  35. Liu, N., et al. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. The European Journal of Neuroscience. 52 (1), 2694-2704 (2020).
  36. Ueno, H., et al. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Science Reports. 10 (1), 3509 (2020).
  37. Rodgers, R. J., Dalvi, A. Anxiety, defence and the elevated plus-maze. Neuroscience and Biobehavioral Reviews. 21 (6), 801-810 (1997).
  38. Deacon, R. M. J., Penny, C., Rawlins, J. N. P. Effects of medial prefrontal cortex cytotoxic lesions in mice. Behavioural Brain Research. 139 (1-2), 139-155 (2003).
  39. Fernagut, P. O., Diguet, E., Labattu, B., Tison, F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. Journal of Neuroscience Methods. 113 (2), 123-130 (2002).
  40. Wooley, C. M., Xing, S., Burgess, R. W., Cox, G. A., Seburn, K. L. Age, experience and genetic background influence treadmill walking in mice. Physiology & Behavior. 96 (2), 350-361 (2009).
  41. Lakes, E. H., Allen, K. D. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations. Osteoarthritis and Cartilage. 24 (11), 1837-1849 (2016).
  42. Deuis, J. R., Dvorakova, L. S., Vetter, I. Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience. 10, 284 (2017).
  43. Tanas, J. K., et al. Multidimensional analysis of behavior predicts genotype with high accuracy in a mouse model of Angelman syndrome. Translational Psychiatry. 12 (1), 426 (2022).
  44. Silva-Santos, S., et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. The Journal of Clinical Investigation. 125 (5), 2069-2076 (2015).
  45. Milazzo, C., et al. Antisense oligonucleotide treatment rescues UBE3A expression and multiple phenotypes of an Angelman syndrome mouse model. JCI Insight. 6 (15), e145991 (2021).

Play Video

Cite This Article
Kubik-Zahorodna, A., Prochazka, J., Sedlacek, R. Behavioral Characterization of an Angelman Syndrome Mouse Model. J. Vis. Exp. (200), e65182, doi:10.3791/65182 (2023).

View Video