Summary

使用报告基因表达重组SARS-CoV-2对K18 hACE2转基因小鼠的病毒感染进行实时成像和定量

Published: November 05, 2021
doi:

Summary

该协议描述了在K18 hACE2转基因小鼠中使用荧光素酶和荧光表达重组(r)SARS-CoV-2和 体内 成像系统(IVIS)的病毒感染动力学,以克服研究 体内SARS-CoV-2感染所需的次要方法的需求。

Abstract

2019年新型冠状病毒肺炎(COVID-19)大流行是由严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)引起的。迄今为止,SARS-CoV-2已造成全球超过2.42亿例感染和490多万人死亡。与其他病毒类似,研究SARS-CoV-2需要使用实验方法来检测受感染细胞和/或动物模型中病毒的存在。为了克服这一限制,我们产生了复制能力强的重组(r)SARS-CoV-2,其表达生物发光(纳米脱硫酶,Nluc)或荧光(Venus)蛋白。这些报告基因表达rSARS-CoV-2允许基于Nluc和Venus报告基因的表达在 体外体内 跟踪病毒感染。在这里,该研究描述了使用rSARS-CoV-2 / Nluc和rSARS-CoV-2 / Venus来检测和跟踪先前描述的K18人血管紧张素转换酶2(hACE2)转基因小鼠感染模型中的SARS-CoV-2感染,使用 体内 成像系统(IVIS)。这种rSARS-CoV-2 / Nluc和rSARS-CoV-2 / Venus在 体内显示出rSARS-CoV-2 / WT样致病性和病毒复制。重要的是,Nluc和Venus的表达使我们能够直接跟踪受感染小鼠 体内和离体的病毒感染。这些rSARS-CoV-2 / Nluc和rSARS-CoV-2 / Venus代表了研究SARS-CoV-2 体内生物学,了解病毒感染和相关COVID-19疾病以及确定有效的预防和/或治疗治疗以对抗SARS-CoV-2感染的绝佳选择。

Introduction

严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)是一种包膜,阳性,单链RNA病毒,属于冠状病毒科1中的β冠状病毒谱系。这种病毒家族分为α-,β-,Gamma-和Delta-coronavirus1。α-和β-冠状病毒主要感染哺乳动物,而γ-和δ-冠状病毒几乎只感染鸟类2。迄今为止,已有七种冠状病毒(CoV)跨越了物种屏障,成为人类冠状病毒(HCoV):两种α冠状病毒(HCoV-229E和HCoV-NL63)和五种β-CoV(HCoV-OC43,HCoV-HKU1,SARS-CoV,中东呼吸综合征冠状病毒[MERS-CoV]和SARS-CoV-2)3456。SARS-CoV、MERS-CoV和SARS-CoV-2具有高致病性,可引起严重的下呼吸道感染7。在SARS-CoV-2出现之前,有两次由CoV引起的流行病爆发:2002-2003年在中国广东普罗维登斯的SARS-CoV,病死率(CFR)约为9.7%;2012年至今中东中东呼吸综合征冠状病毒,病死率约为34%78。SARS-CoV-2的总体CFR在3.4%-49%之间,基础疾病导致更高的CFR89。自2019年12月在中国武汉发现SARS-CoV-2以来,已造成全球超过2.42亿人感染和超过490万人死亡7101112。值得注意的是,自2020年底以来,新的SARS-CoV-2关注变体(VoC)和感兴趣的变体(VoI)影响了病毒特征,包括传播和抗原性913,以及COVID-19大流行的总体方向。对于SARS-CoV-2感染的治疗,目前只有一个美国(美国)美国食品和药物管理局(FDA)治疗性抗病毒药物(瑞德西韦)和一种紧急使用授权(EUA)药物(巴瑞替尼,与瑞德西韦联合给药)14。还有6种批准的EUA单克隆抗体:REGEN-COV(卡西维单抗和依德维单抗,一起给药),索曲维单抗,托珠单抗,巴姆拉尼昔单抗和雌虫昔单抗一起给药1516171819。目前只有一种FDA批准的预防性疫苗辉瑞-BioNTech,另外两种预防性疫苗(Moderna和Janssen)已获得EUA批准的20,21222324然而,随着感染率不受控制以及VoC和VoI的出现,SARS-CoV-2仍然对人类健康构成威胁。因此,迫切需要新的方法来确定有效的预防和治疗方法,以控制SARS-CoV-2感染和仍在进行的COVID-19大流行。

研究SARS-CoV-2需要费力的技术和次要方法来识别感染细胞和/或经过验证的感染动物模型中病毒的存在。反向遗传学的使用允许重组病毒的产生来回答病毒感染生物学中的重要问题。例如,反向遗传学技术提供了揭示和理解病毒感染,发病机制和疾病的方法。同样,反向遗传学方法为设计缺乏病毒蛋白的重组病毒铺平了道路,以了解它们在病毒发病机制中的贡献。此外,反向遗传学技术已被用于生成表达报告基因的重组病毒,用于 体外体内 应用,包括确定用于治疗病毒感染的预防和/或治疗方法。荧光和生物发光蛋白是最常用的报告基因,因为它们具有灵敏度,稳定性和基于新技术改进的易于检测2526在体外,荧光蛋白已被证明是病毒在受感染细胞中定位的更好选择,而荧光素酶更便于定量研究272829在体内,荧光素酶优于荧光蛋白用于整个动物成像,而荧光蛋白优选用于鉴定感染细胞或 离体 成像303132。使用报告基因表达重组病毒已成为研究许多家族病毒的有力工具,其中包括黄病毒,肠道病毒,甲型病毒,慢病毒,沙粒病毒和流感病毒2833343536

为了克服对研究SARS-CoV-2的次要方法的需求并表征 体内实时SARS-CoV-2感染,我们产生了复制能力强的重组(r)SARS-CoV-2,该重组体表达生物发光(纳米酰化酶,Nluc)或荧光(金星)蛋白,使用我们之前描述的基于细菌人造染色体(BAC)的反向遗传学,这些基因在 大肠杆菌 中作为单个拷贝保存 为了尽量减少病毒序列在细菌中繁殖过程中的毒性3738。值得注意的是,rSARS-CoV-2 / Nluc和rSARS-CoV-2 / Venus 在体内显示出rSARS-CoV-2 / WT样致病性。来自rSARS-CoV-2 / Venus的高水平金星表达允许使用 体内 成像系统(IVIS)检测受感染的K18 hACE2转基因小鼠肺部的病毒感染39。Venus表达水平与肺部检测到的病毒滴度密切相关,证明了使用Venus表达作为SARS-CoV-2感染的有效替代物的可行性。使用rSARS-CoV-2 / Nluc,我们能够实时跟踪病毒感染的动态,并使用相同的IVIS方法在K18 hACE2转基因小鼠中纵向评估 体内 SARS-CoV-2感染。

Protocol

涉及K18 hACE2转基因小鼠的方案由德克萨斯生物医学研究所(TBRI)机构生物安全委员会(IBC)和机构动物护理和使用委员会(IACUC)批准。所有实验都遵循国家研究委员会40号实验动物护理和使用指南中的建议。与小鼠一起工作时,需要适当的个人防护设备(PPE)。 1. K18 hACE2转基因小鼠的使用 在特定无病原体条件下,在生物安全水平(BSL?…

Representative Results

k18 hACE2转基因小鼠的rSARS-CoV-2 / Nluc感染(图1 和2)图1A显示了用于评估体内感染的rSARS-CoV-2 / WT(顶部)和rSARS-CoV-2 / Nluc(底部)的示意图。图1B显示了用于评估K18 hACE2转基因小鼠中rSARS-CoV-2 / Nluc感染动态的示意图流程图。4至6周龄的雌性K18 hACE2转基因小鼠(N = 4)在鼻内模拟感染1x PBS或感染105…

Discussion

该协议证明了使用这些表达报告基因的rSARS-CoV-2来监测体内病毒感染 可行性。两种表达报告基因的重组病毒都为研究 体内SARS-CoV-2感染提供了极好的工具。所描述的 离体 (rSARS-CoV-2 / Venus)和 体内 (rSARS-CoV-2 / Nluc)成像系统代表了了解SARS-CoV-2感染动力学,病毒发病机制以及在病毒感染后不同时间识别受感染细胞/器官的绝佳选择。为了进行 离体 (rSARS-CoV-2 / Ven…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢我们研究所(德克萨斯生物医学研究所)的成员在COVID-19大流行期间为保持我们的设施全面运营和安全所做的努力。我们还要感谢我们的机构生物安全委员会(IBC)和spell(IACUC)以省时的方式审查我们的协议。我们感谢西奈山伊坎医学院的Thomas Moran博士提供SARS-CoV交叉反应性1C7C7核衣壳(N)蛋白单克隆抗体。马丁内斯-索布里多实验室的SARS-CoV-2研究目前得到NIAID/ NIH拨款RO1AI161363-01,RO1AI161175-01A1和R43AI165089-01的支持;国防部(DoD)拨款W81XWH2110095和W81XWH2110103;圣安东尼奥精准治疗伙伴关系;德克萨斯生物医学研究所论坛;德克萨斯大学圣安东尼奥健康科学中心;圣安东尼奥医学基金会;并由流感发病机制和传播研究中心(CRIPT)提供,该中心是NIAID资助的流感研究和反应卓越中心(CEIRR,合同号75N93021C00014)。

Materials

0.5% Triton X-100 J.T.Baker X198-07 Store at room temperature (RT)
1% DEAE-Dextran MP Biomedicals 195133
10% Formalin solution, neutral buffered Sigma-Aldrich HT501128
Agar Oxoid LP0028
24-well Cell Culture Plate Greiner Bio-one 662160
5% Sodium bicarbonate Sigma Aldrich S-5761
6-well Cell Culture Plate Greiner Bio-one 657160
96-well Cell Culture Plate Greiner Bio-one 655-180
African green monkey kidney epithelial cells (Vero E6) ATCC CRL-1586
Ami HT Spectral Instruments Imaging
Aura Imaging Software 3.2.0 Spectral Instruments Imaging Image analysis software
Bovine Serum Albumin (BSA), 35% Sigma-Aldrich A9647 Store at 4 °C
Cell culture grade water Corning 25-055-CV
Dulbecco’s modified Eagle’s medium (DMEM) Corning Cellgro 15-013-CV Store at 4 °C
Anesthesia gas machine Veterinary Anesthesia Systems, Inc. VAS 2001R
Fetal Bovine Serum (FBS) Seradigm 1500-050 Store at -20 °C
Four- to six-week-old female K18-hACE2 transgenic mice The Jackson Laboratory 34860
Graphpad Prism Version 9.1.0 GraphPad
Isoflurane Baxter 1001936040 Store at RT
MARS Data Analysis Software BMG LABTECH
MB10 tablets QUIP Laboratories MBTAB1.5 Store at RT
Nano-Glo Luciferase Assay Reagent Promega N1110 This reagent is used to measure Nluc activity. Store at -20 °C
Nunc MicroWell 96-Well Microplates ThermoFisher Scientific 269620
Nunc MicroWell 96-Well Microplates ThermoFisher Scientific 269620
Penicillin/Streptomycin/L-Glutamine (PSG) 100x Corning 30-009-CI Store at -20 °C
PHERAstar FSX BMG LABTECH PHERAstar FSX
Precelleys Evolution homogenizer Bertin Instruments P000062-PEVO0-A
Soft tissue homogenizing CK14 – 7 mL Bertin Instruments P000940-LYSK0-A
T75 EasYFlask ThermoFisher Scientific 156499
VECTASTAIN ABC-HRP Kit, Peroxidase Vector Laboratories PK-4002 ABC kit and DAB Peroxidase Substrate kit

References

  1. V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H., Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology. 19 (3), 155-170 (2021).
  2. Pal, M., Berhanu, G., Desalegn, C., Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus. 12 (3), 7423 (2020).
  3. Su, S., et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology. 24 (6), 490-502 (2016).
  4. Cui, J., Li, F., Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 17 (3), 181-192 (2019).
  5. Lu, R., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 395 (10224), 565-574 (2020).
  6. Evans, J. P., Liu, S. L. Role of host factors in SARS-CoV-2 entry. Journal of Biological Chemistry. 297 (1), 100847 (2021).
  7. Petersen, E., et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infectious Diseases. 20 (9), 238-244 (2020).
  8. Alfaraj, S. H., et al. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study. Travel Medicine and Infectious Disease. 29, 48-50 (2019).
  9. Harvey, W. T., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology. 19 (7), 409-424 (2021).
  10. Dong, E., Du, H., Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infectious Diseases. 20 (5), 533-534 (2020).
  11. Bar-On, Y. M., Flamholz, A., Phillips, R., Milo, R. ARS-CoV-2 (COVID-19) by the numbers. Elife. 9, 57309 (2020).
  12. Roussel, Y., et al. SARS-CoV-2: fear versus data. International Journal of Antimicrobial Agents. 55 (5), 105947 (2020).
  13. Scialo, F., et al. SARS-CoV-2: One year in the pandemic. What have we learned, the new vaccine era and the threat of SARS-CoV-2 variants. Biomedicines. 9 (6), 611 (2021).
  14. . Coronavirus (COVID-19) update: FDA authorizes additional monoclonal antibody for treatment of COVID-19 Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19 (2021)
  15. Dougan, M., et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. New England Journal of Medicine. 385 (15), 1382-1392 (2021).
  16. Ledford, H. COVID antibody treatments show promise for preventing severe disease. Nature. 591 (7851), 513-514 (2021).
  17. Tuccori, M., et al. An overview of the preclinical discovery and development of bamlanivimab for the treatment of novel coronavirus infection (COVID-19): reasons for limited clinical use and lessons for the future. Expert Opinion on Drug Discovery. , 1-12 (2021).
  18. Phan, A. T., Gukasyan, J., Arabian, S., Wang, S., Neeki, M. M. Emergent inpatient administration of casirivimab and imdevimab antibody cocktail for the treatment of COVID-19 pneumonia. Cureus. 13 (5), 15280 (2021).
  19. O’Brien, M. P., et al. Subcutaneous REGEN-COV antibody combination in early SARS-CoV-2 infection. medRxiv. , (2021).
  20. Beigel, J. H., et al. Remdesivir for the treatment of Covid-19 – Final report. New England Journal of Medicine. 383 (19), 1813-1826 (2020).
  21. Li, L., et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. Journal of the American Medical Association. 324 (5), 460-470 (2020).
  22. Polack, F. P., et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine. 383 (27), 2603-2615 (2020).
  23. Oliver, S. E., et al. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine – United States, December 2020. Morbidity and Mortality Weekly Report. 69 (50), 1922-1924 (2020).
  24. Oliver, S. E., et al. The advisory committee on immunization practices’ interim recommendation for use of Janssen COVID-19 vaccine – United States, February 2021. Morbidity and Mortality Weekly Report. 70 (9), 329-332 (2021).
  25. Zhao, H., et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. Journal of Biomedical Optics. 10 (4), 41210 (2005).
  26. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods. 2 (12), 905-909 (2005).
  27. Nogales, A., et al. A novel fluorescent and bioluminescent bireporter Influenza A Virus to evaluate viral infections. Journal of Virology. 93 (10), 00032 (2019).
  28. Nogales, A., et al. Replication-competent fluorescent-expressing influenza B virus. Virus Research. 213, 69-81 (2016).
  29. Welsh, D. K., Noguchi, T. Cellular bioluminescence imaging. Cold Spring Harbor Protocols. 2012 (8), (2012).
  30. Tran, V., Moser, L. A., Poole, D. S., Mehle, A. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. Journal of Virology. 87 (24), 13321-13329 (2013).
  31. Schoggins, J. W., et al. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proceedings of the National Academy of Sciences of the United States of America. 109 (36), 14610-14615 (2012).
  32. Luker, G. D., et al. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. Journal of Virology. 76 (23), 12149-12161 (2002).
  33. Li, X., et al. Development of a rapid antiviral screening assay based on eGFP reporter virus of Mayaro virus. Antiviral Research. 168, 82-90 (2019).
  34. Kirui, J., Freed, E. O. Generation and validation of a highly sensitive bioluminescent HIV-1 reporter vector that simplifies measurement of virus release. Retrovirology. 17 (1), 12 (2020).
  35. Shang, B., et al. Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Research. 97 (2), 198-205 (2013).
  36. Zou, G., Xu, H. Y., Qing, M., Wang, Q. Y., Shi, P. Y. Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Research. 91 (1), 11-19 (2011).
  37. Ye, C., et al. Rescue of SARS-CoV-2 from a single bacterial artificial chromosome. mBio. 11 (5), 02168 (2020).
  38. Avila-Perez, G., Park, J. G., Nogales, A., Almazan, F., Martinez-Sobrido, L. Rescue of recombinant Zika virus from a bacterial artificial chromosome cDNA clone. Journal of Visualized Experiments: JoVE. (148), e59537 (2019).
  39. Chiem, K., et al. A bifluorescent-based assay for the identification of neutralizing antibodies against SARS-CoV-2 variants of concern in vitro and in vivo. Journal of Virology. , (2021).
  40. Committee for the update of the guide for the care and use of laboratory animals., Institute for laboratory animal research (U.S) & National Academies Press (U.S.). Guide for the care and use of laboratory animals. 8th edn. National Research Council (US). , (2011).
  41. Ye, C., et al. Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses. Proceedings of the National Academy of Sciences of the United States of America. 118 (41), (2021).

Play Video

Cite This Article
Morales Vasquez, D., Chiem, K., Silvas, J., Park, J., Ye, C., Martínez-Sobrido, L. Live Imaging and Quantification of Viral Infection in K18 hACE2 Transgenic Mice Using Reporter-Expressing Recombinant SARS-CoV-2. J. Vis. Exp. (177), e63127, doi:10.3791/63127 (2021).

View Video