Questa procedura descrive la raccolta di regioni cerebrali congelate discrete per ottenere proteine e RNA di alta qualità utilizzando strumenti economici e comunemente disponibili.
Man mano che la nostra comprensione della neurobiologia è progredita, le analisi molecolari vengono spesso eseguite su piccole aree cerebrali come la corteccia prefrontale mediale (mPFC) o il nucleo accumbens. La sfida di questo lavoro consiste nel sezionare l’area corretta preservando il microambiente da esaminare. In questo articolo viene descritto un metodo semplice e a basso costo utilizzando risorse prontamente disponibili nella maggior parte dei laboratori. Questo metodo mantiene l’acido nucleico e le proteine mantenendo il tessuto congelato durante tutto il processo. I cervelli sono tagliati in sezioni da 0,5 a 1,0 mm utilizzando una matrice cerebrale e disposti su una piastra di vetro congelato. I punti di riferimento all’interno di ogni sezione vengono confrontati con un riferimento, ad esempio l’atlante del cervello del mouse di Allen, e le regioni vengono sezionate usando un punzone a base di bisturi freddo o di biopsia. Il tessuto viene poi immagazzinato a -80 gradi centigradi fino all’uso. Attraverso questo processo ratto e topo mPFC, nucleo accumbens, ippocampo ventrale e altre regioni sono stati analizzati con successo utilizzando qRT-PCR e assaggi occidentali. Questo metodo è limitato alle regioni cerebrali che possono essere identificate da punti di riferimento chiari.
Questo lavoro illustra la dissezione delle regioni cerebrali congelate per l’estrazione di acido nucleico o proteina di alta qualità utilizzando un riferimento, come l’Atlante del cervello del mouse Allen1, come guida. In questa tecnica, i cervelli sono congelati da flash e vengono conservati a -80 gradi centigradi per la sezionamento e la dissezione successivi, pur essendo mantenuti in condizioni congelate. Questo processo permette al ricercatore di raccogliere un gran numero di cervelli in una sessione e successivamente sezionarli per una raccolta accurata di più regioni del cervello.
La raccolta accurata di regioni di interesse cerebrali (ROI) è spesso necessaria quando si risponde a domande relative all’espressione genica e proteica. Mentre farmacologia, elettrofisiologia e optogenetica possono essere utilizzate su roditori selvatici o geneticamente modificati per aiutare a chiarire i cambiamenti molecolari alla base dei comportamenti osservati2,3,4, la misurazione dei cambiamenti indotti nei trascrittomi e nei proteomi è spesso utilizzata per sostenere questi risultati. Tecniche come la narrazione quantitativa inversa della polimerasi di trascrizione inversa (RT-qPCR), il gonfiore occidentale, RNAseq5, MAPSeq6 e HPLC7 sono robuste e relativamente basse in termini di costi, consentendo a molti laboratori di studiare cambiamenti molecolari indotti all’interno di piccole regioni cerebrali2,4,5,6.
Ci sono diversi modi per estrarre e purificare l’acido nucleico o la proteina dalle regioni cerebrali8,9,10,11,12. Molti laboratori raccolgono le regioni del cervello raffreddando e tagliando i cervelli sul ghiaccio al momento del raccolto9,13. Anche se questo approccio può portare ad acido nucleico e proteine di alta qualità, è un po ‘limitato nel tempo in quanto la degradazione all’interno del microambiente del tessuto può avvenire a queste temperature. Ciò può essere particolarmente vero quando si tenta di sezionare un gran numero di animali o ROI in una sola seduta. Mantenere i campioni congelati aiuta a mantenere molecole bersaglio labili, fornendo al ricercatore il tempo per confrontare attentamente i punti di riferimento su entrambi i lati di ogni sezione nello sforzo di raccogliere campioni relativamente puri. La cattura laser è un altro modo per raccogliere tessuti per l’analisi dell’RNA o delle proteine dalle aree cerebrali10. Questa procedura è superiore alla dissezione meccanica in quanto i ROI molto piccoli e di forma irregolare possono essere identificati e isolati. Tuttavia, la cattura laser è limitata dall’uso di costose attrezzature e reagenti, richiede molto tempo e può anche essere più suscettibile alla degradazione del campione.
La dissezione di micropunch sui tessuti congelati non è nuova. I primi documenti di Miklos Palkovits e altri descrivono le tecniche di base nel dettaglio14,15. Questa presentazione segue in gran parte il lavoro originale, con alcuni miglioramenti per facilitare l’efficienza e ridurre i costi delle attrezzature necessarie. Per esempio, le sezioni cerebrali sono fatte in un blocco cerebrale congelato piuttosto che su un criostato. Questo produce sezioni più spesse che riduce il numero di sezioni necessarie per raccogliere campioni di ROI. Questo metodo seziona anche i campioni su una piastra di vetro congelato che si trova sul ghiaccio secco all’interno di una scatola isolata. Questo produce una fase di subcongelamento sul banco su cui lavorare. Le sezioni sezionate in questo modo sono facilmente manipolabili, consentendo al ricercatore di confrontare entrambi i lati di ogni sezione con un riferimento al fine di limitare la contaminazione da regioni al di fuori del ROI desiderato.
I vantaggi di questo protocollo sono che 1) il cervello è mantenuto in una condizione congelata durante tutto il processo, che aiuta a preservare le proteine e l’acido nucleico e dà al ricercatore il tempo di raccogliere con attenzione i ROI, e 2) i reagenti necessari sono poco costosi e si trovano nella maggior parte dei laboratori di biologia molecolare. In questo processo, interi cervelli sono sezionato a 0,5–1,0 mm in una matrice cerebrale e collocati su una piastra di vetro congelato che viene continuamente raffreddata con ghiaccio secco. Punti di riferimento trovati nell’Atlante del cervello di Allen1 o in altri atlanti cerebrali16,17 vengono utilizzati per identificare le regioni di interesse, che vengono poi sezionati utilizzando un pugno a freddo o bisturi. Poiché il tessuto non viene mai scongelato, le regioni raccolte in questo modo forniscono RNA e proteine di alta qualità per le analisi a valle.
Questo lavoro descrive una tecnica per isolare piccole regioni specifiche del cervello limitando la degradazione dell’acido nucleico e delle proteine. Il danno ai tessuti cerebrali avviene rapidamente una volta che un organismo muore. Ciò è in parte dovuto a un rapido accumulo di glutammato extracellulare e alla conseguente eccitotossicità che si verifica21. L’RNA messaggero è particolarmente vulnerabile alla degradazione22,23. La ripa…
The authors have nothing to disclose.
Questo lavoro è stato supportato da NIH, DA043982 e DA046196.
0.5 mm Mouse coronal brain matrice | Braintree Scientific | BS-SS 505C | Cutting block |
0.5 mm Rat coronal brain matrice | Braintree Scientific | BS-SS 705C | Cutting block |
1.0 mm Biopsy Punch with plunger | Electron Microscopy Sciences | 69031-01 | |
1.5 mL microcentrifuge tubes | Dot Scientific | 229443 | For storing frozen ROIs |
1.5 mm Biopsy Punch with plunger | Electron Microscopy Sciences | 69031-02 | |
2.0 mm Biopsy Punch with plunger | Electron Microscopy Sciences | 69031-03 | |
4-12% NuPage gel | Invitrogen | NPO323BOX | protein gradient gel |
Bioanalyzer System | Agilent | 2100 | RNA analysis system |
Dounce tissue grinder | Millipore Sigma | D8938 |
Glass tissue homogenizer |
Dry Ice | |||
Fiber-Lite | Dolan-Jenner Industries Inc. | Model 180 | Cool lamp |
Glass plates | LabRepCo | 11074010 | |
HALT | ThermoFisher | 78440 | protease inhibitor cocktail |
Low profile blades | Sakura Finetek USA Inc. | 4689 | |
mouse anti-actin antibody | Developmental Studies Hybridoma Bank | JLA20 | Antibody |
Nanodrop | Thermo Scientific | 2000C | Used in initial RNA purity analysis |
No. 15 surgical blade | Surgical Design Inc | 17467673 | |
Odyssey Blocking buffer | LiCor Biosciences | 927-40000 | Western blocking reagent |
Omni Tissue Master 125 | VWR | 10046-866 | Tissue homogenizer |
rabbit anti-KCC2 antibody | Cell Signaling Technology | 94725S | Antibody |
RNA Plus Micro Kit | Qiagen | 73034 | Used to extract RNA from small tissue samples |
RNaseZap | Life Technologies | AM9780 | |
Scalpel handle | Excelta Corp. | 16050103 | |
Standard razor blades | American Line | 66-0362 | |
TRIzol Reagent | ThermoFisher Scientific | 15596026 | Used to extract RNA from tissue |