Parasponia andersonii est un arbre tropical à croissance rapide qui appartient à la famille du cannabis (Cannabaceae) et peut former des nodules de racine fixant l’azote en association avec le rhizobium. Ici, nous décrivons un protocole détaillé pour les analyses génétiques inversées dans P. andersonii basé sur la transformation stable d’Agrobacterium-négociée et l’édition de génome CRISPR/Cas9-basée.
Parasponia andersonii est un arbre tropical à croissance rapide qui appartient à la famille cannabis (Cannabaceae). Avec 4 espèces supplémentaires, il forme la seule lignée connue de non-légumineuses capable d’établir une symbiose nodule fixatrice d’azote avec le rhizobium. Des études comparatives entre les légumineuses et P. andersonii pourraient fournir un aperçu précieux des réseaux génétiques sous-jacents à la formation de nodules racinaires. Pour faciliter les études comparatives, nous avons récemment séquencé le génome de P. andersonii et établi Agrobacterium tumefaciens-mediated transformation stable et CRISPR/Cas9-based genome editing. Ici, nous fournissons une description détaillée des procédures de transformation et d’édition du génome développées pour P. andersonii. En outre, nous décrivons des procédures pour la germination et la caractérisation de graine des phénotypes symbiotiques. Grâce à ce protocole, des lignées mutantes transgéniques stables peuvent être générées en 2-3 mois. La propagation in vitro végétative des lignées transgéniques T0 permet d’initier des expériences de phénotypage 4 mois après la coculture de A. tumefaciens. Par conséquent, ce protocole ne prend que légèrement plus de temps que la méthode transitoire de transformation des racines agrobacterium rhizogenesdisponible pour P. andersonii, mais offre plusieurs avantages évidents. Ensemble, les procédures décrites ici permettent à P. andersonii d’être utilisé comme modèle de recherche pour des études visant à comprendre les associations symbiotiques ainsi que potentiellement d’autres aspects de la biologie de cet arbre tropical.
Parasponia andersonii est un arbre tropical appartenant à la famille Cannabis (Cannabaceae) et est originaire de Papouasie-Nouvelle-Guinée et de plusieurs îles du Pacifique1,2,3. Avec 4 espèces supplémentaires de Parasponia, il représente la seule lignée non légumineuse qui peut établir une symbiose nodule fixatrice d’azote avec le rhizobia. Cette symbiose est bien étudiée dans les modèles de légumineuses (Fabaceae) Medicago truncatula et Lotus japonicus, ce qui a abouti à l’acquisition de connaissances détaillées sur la nature génétique moléculaire de la formation de nodule et le fonctionnement4. En outre, il a été démontré que la symbiose nodule racine dans les légumineuses est fondée sur la symbiose mycorhizique arbusculaire beaucoup plus ancienne et répandue5. Les comparaisons phylogenomiques suggèrent que les symbioes nodules fixant l’azote des légumineuses, Parasponia,ainsi que, les espèces dites de plante actinorhizal qui hébergent les bactéries diazotrophiques de Frankia, ont une origine évolutive partagée 6,7,8. Pour déterminer si les gènes identifiés pour être impliqués dans la formation de nodule de légumineuses font partie d’une base génétique conservée, des études sur des espèces non légumineuses sont essentielles. À cette fin, nous proposons d’utiliser P. andersonii comme modèle de recherche comparative, aux côtés des légumineuses, pour identifier les réseaux génétiques de base sous-jacents à la formation et au fonctionnement des nodules racinaires.
P. andersonii est un pionnier que l’on peut trouver sur les pentes des collines volcaniques. Il peut atteindre des vitesses de croissance de 45 cm par mois et atteindre des longueurs allant jusqu’à 10 mètres9. Les arbres P. andersonii sont pollinisés par le vent, ce qui est facilité par la formation de fleurs mâles et femelles séparées3,10. Nous avons récemment séquencé et annoté le génome diploïde (2n – 20; 560 Mb/1C) de P. andersonii, et assemblé des séquences de génome de projet de 2 autres espèces de Parasponia; P. rigida et P. rugosa6. Cela a révélé 35 000 modèles de gènes P. andersonii qui peuvent être regroupés en 20 000 orthèses avec des gènes de M. truncatula, soja (Glycine max), Arabidopsis thaliana, fraise des bois ( Fragaria vesca), Trema orientalis, peuplier de coton noir (Populus trichocarpa) et eucalyptus (Eucalyptus grandis)6. De plus, les comparaisons de transcriptome entre M. truncatula et P. andersonii ont permis d’identifier un ensemble de 290 orthologues putatifs qui présentent un modèle d’expression amélioré par la nodule chez les deux espèces6. Cela constitue une excellente ressource pour les études comparatives.
Pour étudier la fonction génique dans les racines et les nodules de P. andersonii, un protocole pour la transformation des racines médiées par Agrobacterium rhizogenesa été établi11. À l’aide de ce protocole, les plantes composées portant des racines transgéniques peuvent être générées dans un laps de temps relativement court. Cette méthode est, aussi, largement appliquée dans la recherche de légumineuse-symbiose12,13,14. Cependant, l’inconvénient de cette méthode est que seules les racines sont transformées et que chaque racine transgénique représente un événement de transformation indépendant, entraînant une variation substantielle. En outre, la transformation est transitoire et les lignes transgéniques ne peuvent pas être maintenues. Cela rend la transformation des racines basée sur A. rhizogenesmoins adaptée à l’édition du génome à médiation CRISPR/Cas9. En outre, A. rhizogenes transfère ses gènes induisant la racine locus (rol) au génome de la plante, qui une fois exprimé interférer avec l’homéostasie hormonale15. Cela rend difficile l’étude du rôle des hormones végétales dans A. rhizogenes– racines transformées. Pour surmonter ces limitations, nous avons récemment développé un protocole pour la transformation basée sur Agrobacterium tumefacienset la mutagenèse CRISPR/Cas9-négociée de P. andersonii10.
Ici, nous fournissons une description détaillée de la procédure de transformation a. tumefacienset du pipeline de génétique inversée développé pour P. andersonii. En outre, nous fournissons des protocoles pour la manipulation en aval des plantules transgéniques, y compris des essais pour étudier les interactions symbiotiques. En utilisant le protocole décrit ici, plusieurs lignes transgéniques peuvent être générées dans une période de 2-3 mois. En combinaison avec la mutagénèse CRISPR/Cas9- négociée, cela permet une génération efficace de lignes mutantes knock-out. Ces lignées mutantes peuvent être végétativement propagées in vitro10,16,17, ce qui permet de générer suffisamment de matériel pour commencer la caractérisation phénotypique à 4 mois après la procédure de transformation a été initié10. Ensemble, cet ensemble de procédures devrait permettre à n’importe quel laboratoire d’adopter P. andersonii comme modèle de recherche pour des études visant à comprendre les associations rhizobial et mycorhiziennes, ainsi que potentiellement d’autres aspects de la biologie de cet arbre tropical.
Les légumineuses et le genre Cannabaceae Parasponia, très apparenté, représentent les deux seuls clades d’espèces végétales capables d’établir une relation endosymbiotique avec les rhizobia fixant l’azote et de former des nodules racinaires. Les études comparatives entre les espèces des deux clades sont très pertinentes pour fournir un aperçu des réseaux génétiques de base permettant cette symbiose. Actuellement, les études génétiques sont principalement effectuées chez les légumineuses; en particulier les deux espèces modèles M. truncatula et L. japonicus. Pour fournir une plate-forme expérimentale supplémentaire et faciliter des études comparatives avec un non-légumineuse nodulating, nous décrivons ici un protocole détaillé pour la transformation stable et les analyses génétiques inversées dans P. andersonii. Le protocole présenté utilise la propagation in vitro des lignées Transgéniques De 0 P. andersonii, ce qui permet d’initier une analyse phénotypique dans les 4 mois suivant la coculture d’A. tumefaciens. C’est beaucoup plus rapide que les protocoles actuels qui ont été établis pour une transformation stable des légumineuses33. Cela fait de P. andersonii un modèle de recherche attrayant.
Le protocole décrit ici contient plusieurs étapes critiques. Le premier concerne la germination des graines. Pour préparer les graines de P. andersonii pour la germination, les graines doivent être isolées des baies. Cela se fait en frottant les baies sur un morceau de papier de soie ou contre l’intérieur d’un tamis à thé. Cette procédure doit être effectuée en douceur afin d’éviter des dommages à la couche de graines. Si la couche de graines est endommagée, l’eau de Javel pourrait pénétrer dans la graine pendant la stérilisation, ce qui réduit la viabilité des semences. Pour briser la dormance des graines, les graines sont soumises à un cycle de température de 10 jours. Cependant, en dépit de ce traitement, la germination n’est pas entièrement synchronisée. En général, les premières graines montrent l’émergence du radicle après 7 jours, mais d’autres peuvent prendre plusieurs jours de plus pour germer.
Des points critiques dans la procédure de transformation concernent le choix du matériel de départ et la durée de l’étape de co-culture. Pour parvenir à une transformation efficace, il est préférable d’utiliser des tiges saines et jeunes ou des pétioles de plantes non stériles cultivées en serre comme matériau de départ. Afin d’induire la croissance des jeunes branches, il est conseillé de couper les arbres Parasponia tous les 2-3 mois et rafraîchir les arbres une fois par an. En outre, l’étape de co-culture doit être effectuée pendant 2 jours seulement. La co-culture prolongée favorise la surcolonisation des explants de tissus par A. tumefaciens et réduit généralement l’efficacité de la transformation. Pour éviter la surcolonisation par A. tumefaciens, il est également important de rafraîchir régulièrement les assiettes sur lesquelles les explants sont cultivés. En cas de surcolonisation, les explants tissulaires pourraient être lavés (voir la section 3.8) pour enlever les cellules A. tumefaciens. Nous conseillons d’ajouter de l’eau de Javel à la solution SH-10 utilisée pour le lavage (concentration finale : hypochlorite de 2 %). Il est important de noter que cette étape de lavage supplémentaire pourrait ne pas fonctionner sur les explants fortement infectés (figure 2B). Dans le cas où une transformation avec une construction CRISPR/Cas9 ne donne qu’un nombre limité de pousses transformées de façon putative ou si la mutagénèse d’un gène particulier est censée causer des problèmes de régénération, il est conseillé d’inclure une construction de contrôle vectorielle vide comme le contrôle positif. Enfin, il est important de s’assurer que toutes les lignes transgéniques sélectionnées résultent d’événements indépendants d’intégration de l’ADN T. Par conséquent, nous instruisons de ne prendre qu’une seule pousse putativement transgénique de chaque côté d’une explante. Cependant, nous nous rendons compte que cela réduit le nombre potentiel de lignes indépendantes. Si de nombreuses lignes sont nécessaires, les chercheurs pourraient décider de séparer les calli transformés de façon putative des explants d’origine lorsque ces calli sont de 2 mm de taille et de culture de ces calli indépendamment. De cette façon, plusieurs lignes pourraient être isolées de chaque explante, ce qui augmente le nombre de lignes transgéniques potentielles.
Dans le protocole actuel, les lignées transgéniques de P. andersonii se propagent végétativement par la propagation in vitro. L’avantage de ceci est que beaucoup de plantlets transgéniques peuvent être produits dans une période relativement courte de temps. Cependant, cette méthode a également plusieurs limitations. Tout d’abord, le maintien des lignées transgéniques T0 par la propagation in vitro est laborieux et pourrait entraîner des altérations génétiques ou épigénétiques indésirables34,35. Deuxièmement, les lignes T0 contiennent encore une copie de l’ADN T, y compris la cassette de résistance aux antibiotiques. Cela limite le nombre de retransformations possibles, car différents marqueurs de sélection sont nécessaires pour chaque transformation. Actuellement, nous n’avons testé la transformation qu’à l’aide de la sélection de kanamycine ou d’hygromycine (données non affichées). De plus, la présence de la séquence et des sgARN de Cas9 dans les lignes transgéniques T0 complique les études de complémentarité. Des essais de complémentation sont possibles, mais exigent que le site cible sgRNA (s) soit muté en tant que tel que l’édition génétique de la construction de complémentation est empêchée. Troisièmement, un inconvénient de travailler avec des lignes T0 est que les mutants CRISPR/Cas9 pourraient être chimériques. Pour empêcher l’analyse phénotypique des lignes mutantes chimériques, nous recommandons de répéter l’analyse de génotypage après la propagation in vitro sur au moins 3 pousses différentes. Bien que, le nombre de mutants chimériques obtenus à l’aide du protocole décrit ici est limité, ils sont parfois observés10. Pour surmonter les limites du travail avec des lignes T 0, les lignées mutantes de P. andersonii pourraient être propagées de façon générative. Les arbres P. andersonii sont dioïques et pollinisés par le vent2. Cela signifie que chaque lignée transgénique doit être manipulée en tant que telle que les fleurs mâles et femelles sont produites sur un seul individu, et ensuite cultivées en tant que telle que la pollinisation croisée ne se produit pas. Comme P. andersonii est un arbre à croissance rapide, il nécessite une quantité substantielle d’espace dans une serre tropicale (28 oC, 85 % d’humidité relative). Par conséquent, bien que techniquement possible, la propagation générative des lignées transgéniques de P. andersonii est difficile sur le plan logistique.
Dans la section de protocole, nous avons décrit 3 méthodes pour nodulation de P. andersonii. L’avantage des systèmes de plaque et de poche est que les racines sont facilement accessibles, ce qui peut permettre l’inoculation ponctuelle des bactéries et la formation de nodule suivant au fil du temps. Cependant, le système de plaque est assez laborieux, ce qui le rend moins adapté aux expériences de nodulation à grande échelle. Un inconvénient du système de poche est qu’il est difficile de prévenir la contamination fongique. Les sachets ne sont pas stériles, et donc la croissance fongique est souvent observée sur la moitié supérieure de la poche. Cependant, cela n’affecte pas la croissance de P. andersonii, et n’interfère donc pas avec les essais de nodulation. En outre, le système de poche est seulement approprié pour les semis. Malgré plusieurs tentatives, nous avons été incapables de cultiver des plantons obtenus par la propagation in vitro dans des sachets.
Le pipeline de génétique inversée P. andersonii décrit ici offre une amélioration substantielle parrapport à la méthode de transformation des racines A. rhizogenesexistante 11 . En utilisant les procédures décrites, des lignées transgéniques stables peuvent être générées efficacement et peuvent être maintenues par propagation in vitro. En revanche, la transformation de A. rhizogenes est transitoire et n’entraîne que la formation de racines transgéniques. Puisque chaque racine transgénique résulte d’une transformation indépendante, les essais basés sur la transformation de A. rhizogenes souffrent d’une variation phénotypique importante. Cette variation est beaucoup moins en cas de lignées stables, bien que la propagation in vitro crée également un certain niveau de variation. En raison de cette variation réduite et du fait que plusieurs planctueux pourraient être phénotypés pour chaque ligne stable, les lignes stables sont plus adaptées aux essais quantitatifs que les racines transformées de A. rhizogenes. En outre, la transformation stable ne dépend pas de l’introduction de la racine A. rhizogenes induisant locus (rol) qui affecte l’équilibre hormonal endogène15. Par conséquent, les lignées stables sont mieux adaptées pour l’analyse génétique inversée des gènes impliqués dans l’homéostasie hormonale par rapport à A. rhizogenes-racines transformées. Un avantage plus général de P. andersonii comme modèle de recherche est qu’il n’a pas connu une duplication récente du génome entier (WGD). La sous-famille de légumineuses Papilionoideae, qui comprend les légumineuses modèles M. truncatula et L. japonicus, ainsi que les Salicaceae (ordre Malpighiales) qui comprend le modèle d’arbre Populus trichocarpa expérimenté WGDs 65 millions d’années il ya36,37. De nombreuses copies de gènes paralogues résultant de ces WGD sont conservées dans les génomes de M. truncatula, L. japonicus et P. trichocarpa37,38,39, qui crée redondance qui pourrait compliquer les analyses génétiques inversées. Comme P. andersonii n’a pas connu un WGD récent, les analyses génétiques inversées sur P. andersonii pourraient être moins affectées par le fonctionnement redondant des copies de gène paralogue.
Pris ensemble, nous fournissons un protocole détaillé pour l’analyse génétique inversée dans P. andersonii. En utilisant ce protocole, les lignes mutantes simples peuvent être générées efficacement dans un délai de 2-3 mois10. Ce protocole peut être étendu pour créer des mutants d’ordre supérieur par le multiplexage des sgRNAs ciblant différents gènes simultanément, comme indiqué pour d’autres espèces végétales40,41,42. En outre, la procédure de transformation stable décrite ici ne se limite pas au ciblage génétique CRISPR/Cas9, mais pourrait également être utilisée pour introduire d’autres types de constructions (p. ex., pour les essais de promoteurs-journalistes, l’expression extra-utérine ou trans– complémentation). Nous avons établi P. andersonii comme modèle de recherche comparatif pour étudier les symbioses mutualistes avec des rhizobia fixant l’azote ou des champignons endomycorhiziens. Cependant, les protocoles décrits ici fournissent également des outils pour étudier d’autres aspects de la biologie de cet arbre tropical, tels que la formation de bois, le développement de fleurs bi-sexuelles ou la biosynthèse des métabolites secondaires spécifiques aux Cannabacées.
The authors have nothing to disclose.
Les auteurs aiment remercier Mark Youles, Sophien Kamoun et Sylvestre Marillonnet d’avoir rendu disponibles les pièces de clonage Golden Gate via la base de données Addgene. De plus, nous tenons à remercier E. James, P. Hadobas et T. J. Higgens pour les graines de P. andersonii. Ces travaux ont été soutenus par l’Organisation néerlandaise pour la recherche scientifique (subvention NWO-VICI 865.13.001; NWO-Open Competition grant 819.01.007) and The Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISET-PRO grant 8245-ID).
Sigma-Aldrich | N0640 | NAA |
Duchefa Biochemie | M1503.0250 | MES |
Sigma-Aldrich | D134406 | Acetosyringone |
Duchefa Biochemie | X1402.1000 | X-Gal |
Merck | 101236 | For nucleic acid electrophoresis gel |
– | – | Pouches box material, hangers |
Merck | 101188 | NH4NO3 |
Sigma-Aldrich | B3408-1G | BAP |
Merck | 100156 | H3BO3 |
Thermo-Fisher | ER1011 | Used as restriction enzyme in Golden Gate cloning assembly |
Thermo-Fisher | 15561020 | Used in Golden Gate cloning assembly |
Merck | 137101 | CaCl2·2H2O |
Duchefa Biochemie | C0111.0025 | C16H16N5O7S2Na |
Thermo-Fisher | K1231 | Used for cloning the blunt-ended PCR amplicons in genotyping procedure |
Agronutrition | AP2011 | Containing Rhizophagus irregularis DAOM 197198 (1,000 spores/mL), used for mychorrization assay |
Merck | 102790 | CuSO4·5H2O |
Duchefa Biochemie | D1004.1000 | Used for plant tissue culture agar-based medium |
Merck | 105101 | K2HPO4 |
VWR Chemicals | 20302.293 | Na2·EDTA |
Duchefa Biochemie | M0803.1000 | C6H14O6 |
Thermo-Fisher | ER0291 | Used as restriction enzyme in Golden Gate cloning assembly |
Merck | 100983 | C2H5OH |
VWR Chemicals | BDH9232-500G | EDTA |
Sigma-Aldrich | Z377600-1PAK | Cellophane membrane |
Biomatters, Ltd. | R9 or higher | Bioinformatics software for in silico cloning and designing of sgRNAs |
Mega International | – | Technical information at https://mega-international.com/tech-info/ |
Sigma-Aldrich | 65882 | Used for fixating nodule tissues |
VWR Chemicals | 24385.295 | – |
Vink | 219341 | Pouches box material, bottom part |
Leica Biosystems | 14702218311 | Used as a template for plastic embedding |
Merck | 100317 | HCl |
Sigma-Aldrich | I5386-1G | IBA |
Merck | 103862 | C6H5FeO7 |
Merck | 103965 | FeSO4O·7H2O |
Duchefa Biochemie | I1401.0005 | IPTG |
Duchefa Biochemie | K0126.0010 | |
Sigma-Aldrich | L2000 | |
Merck | 105886 | MgSO4O·7H2O |
Merck | 105934 | MnCl2·4H2O |
Merck | 102786 | MnSO4O |
Duchefa Biochemie | M1002.1000 | Used for bacterial culture agar-based medium |
Manutan | 92007687 | Pouches material |
Paraxisdienst | 130774 | Elastic sealing foil |
Pull Rhenen | Agra-Perlite No.3 | Used as growing substrate in pots for nodulation assay |
VWR Chemicals | 391-0581 | Used as container for cellophane membranes |
Thermo-Fisher | F130WH | For genotyping transgenic lines |
Addgene | 50337 | Level 0 terminator, 3’UTR, 35s (Cauliflower Mosaic Virus) |
Addgene | 48017 | End-link 2 for assembling 2 level one part into a level 2 acceptor |
Addgene | 48018 | End-link 3 for assembling 3 level one part into a level 2 acceptor |
Addgene | 48001 | Level 1 acceptor. Position 5. Forward orientation |
Addgene | 48007 | Level 1 Acceptor. Position 1. Reverse orientation |
Addgene | 50268 | Level 0 promoter (0.4 kb), 35s (Cauliflower Mosaic Virus) + 5’UTR, Ω (Tobacco Mosaic Virus) |
Addgene | 46966 | Used for designing CRISPR/Cas9 module |
Addgene | 46968 | Used for designing CRISPR/Cas9 module |
Addgene | 50334 | Level 0 Kanamycin/Neomycin/Paromomycin resistance cassette |
Topzeven | – | Used as filters for washing spore suspension |
Sigma-Aldrich | 8.17003 | PEG400 |
Duchefa Biochemie | E1674.0001 | Pots to grow Parasponia plantlets/seedlings |
Merck | 104871 | KH2PO4 |
Merck | 105033 | KOH |
Merck | 105153 | K2SO4O |
Van Leusden b.v. | – | Used as growing substrate for mychorrhization assay |
Duchefa Biochemie | S0225.0050 | SH-basal salt medium |
Duchefa Biochemie | S0411.0250 | SH-vitamin mixture |
Lehle Seeds | VIS-02 | Used as non-ionic surfactant in the washing step of stable transformation |
Merck | 137017 | NaCl |
VWR Chemicals | 89230-072 | C6H11NaO7 |
Merck | 106521 | Na2MoO4·2H2O |
Merck | 106574 | Na2HPO4·7H2O |
Merck | 567549 | NaH2PO4·H2O |
Sigma-Aldrich | 239313 | Na2SO4O |
Duchefa Biochemie | S0809.5000 | C12H22O11 |
Thermo-Fisher | B69 | Used in Golden Gate cloning assembly |
Thermo-Fisher | EL0013 | Used in Golden Gate cloning assembly |
Kulzer-Mitsui Chemicals Group | 64708806 | Methyl methacrylate-based resin powder |
Kulzer-Mitsui Chemicals Group | 64709003 | HEMA (2-hydroxyethyl methacrylate)-based resin solution |
Kulzer-Mitsui Chemicals Group | 66022678 | Methyl methacrylate-based resin solution |
Merck | 1159300025 | |
Acros | 189350250 | |
VWR Chemicals | 663684B | Polysorbate 20 |
Stout Perspex | – | pouches box material, lid |
Duchefa Biochemie | Y1333.1000 | |
Merck | 108816 | ZnCl2 |
Alfa Aesar | 33399 | ZnSO4O·7H2O |