La biopsie et la vitrification de Blastocyst sont nécessaires pour mener efficacement le test génétique préimplantatoire. Une approche impliquant l’ouverture séquentielle de la pellucida de zona et la récupération de 7-8 cellules de trophectoderm dans le jour 5-7 post-insémination limite le nombre de manipulations exigées et l’exposition de l’embryon aux conditions environnementales sous-optimales.
La biopsie de Blastocyst est effectuée pour obtenir un diagnostic génétique fiable pendant des cycles de FIV avec l’essai génétique préimplantatoire. Ensuite, le flux de travail idéal implique un protocole de vitrification sûr et efficace, en raison du délai d’exécution des techniques de diagnostic et de transférer l’embryon sélectionné sur un endomètre physiologique dans un cycle naturel suivant. Une approche de biopsie englobant l’ouverture séquentielle de la zona pellucida et la récupération de 5-10 cellules de trophectoderm (idéalement 7-8) limite le nombre de manipulations exigées et l’exposition de l’embryon aux conditions environnementales sous-optimales. Après une formation adéquate, la technique a été reproductible entre différents opérateurs en termes de synchronisation de la biopsie (8 min, allant de 3 à 22 min en fonction du nombre d’embryons à la biopsie par plat), diagnostics concluants obtenus (97,5%) et les taux de natalité vivante après le transfert de blastocyste euploïde vitrifié (40 %). Le taux de survie après biopsie, vitrification et réchauffement était aussi élevé que 99,8%. Le taux de réexpansion à 1,5 h du réchauffement était aussi élevé que 97%, en grande partie dépendant du moment entre la biopsie et la vitrification (idéalement 30 min), la qualité morphologique blastocyste et le jour de la biopsie. En général, il est préférable de vitrifier un blastocyste effondré; par conséquent, dans les cycles non-PGT, le rétrécissement artificiel laser-assisté pourrait être exécuté pour induire l’effondrement d’embryon avant la cryoconservation. La perspective future la plus prometteuse est l’analyse non invasive des médias de culture de FIV après la culture blastocyste comme source putative de l’ADN embryonnaire. Toutefois, cette avant-garde potentielle est toujours à l’étude et un protocole fiable doit encore être défini et validé.
L’objectif principal de l’embryologie humaine moderne est de maximiser le nombre de naissances vivantes par cycle stimulé et de réduire les coûts, le temps et les efforts pour atteindre une grossesse. Pour atteindre cet objectif, des approches validées pour la sélection des embryons devraient être utilisées pour identifier les embryons compétents en matière de reproduction au sein d’une cohorte obtenue au cours d’un cycle de FIV. Selon les dernières preuves, la culture blastocyste1 combinée à des tests chromosomiques complets et au transfert d’embryons euploïdes vitrifiés (ET) est le cadre le plus efficace pour augmenter l’efficacité de la FIV2. De toute évidence, le dépistage de l’anéuploïde nécessite un spécimen embryonnaire, qui est actuellement principalement représenté à partir de quelques cellules extraites du trophectoderm (TE), c’est-à-dire la section du blastocyste qui donne naissance aux annexes embryonnaires (par exemple, le placenta) pendant la grossesse . Au-delà de l’analyse karyotype, des mutations génétiques uniques pourraient également être évaluées à partir d’une biopsie TE dans le cadre d’une stratégie clinique connue sous le nom de test génétique préimplantatoire (PGT; -A pour les anéuploidies, -SR pour les réarrangements chromosomiques structurels, -M pour les maladies monogéniques). D’autres méthodes de biopsie d’ovocyte/embryon ont été théorisées et adoptées cliniquement au cours des dernières décennies, à savoir la biopsie des corps polaires et la biopsie blastomere. Cependant, leur utilisation est réduite de nos jours puisque leurs inconvénients procéduraux (p. ex., charge de travail et risque accrus d’impact sur la reproduction) et leurs limitations diagnostiques (p. ex., problèmes d’analyse cellulaire unique) entravent implicitement un équilibre suffisant entre les coûts, les risques et les avantages (pour un examen voir3).
Dans cet article, l’un des protocoles principaux pour la biopsie de TE est soigneusement décrit avec les procédures suivantes de vitrification, de réchauffement et de transfert exigées. Le flux de travail décrit ici est idéal pour une unité DE TGP occupée.
Comme déjà décrit précédemment par notre groupe4,5, la procédure implique l’ouverture séquentielle de la pellucida zona de blastocystes entièrement élargis et l’élimination de quelques cellules TE (en moyenne 7-8). Comparée à la méthode de biopsie blastocyste à base d’éclosion laser-assistée36, cette procédure pourrait faciliter le programme quotidien d’une unité de FIV où les procédures délicates, telles que la biopsie blastocyste et la vitrification, doivent être exécutées en temps opportun. Dès que le blastocyste atteint sa pleine expansion, la biopsie peut être effectuée en sélectionnant les cellules TE à enlever, empêchant ainsi le risque d’hernie de la masse cellulaire interne (ICM), ce qui rendrait autrement la procédure difficile. Dans la littérature, un troisième protocole de biopsie blastocyste a également été décrit, qui implique l’éclosion au laser assistée étant effectuée une fois que l’embryon a déjà atteint le stade blastocyste, quelques heures avant la procédure5,7. Cependant, cette approche prend plus de temps et convient principalement aux unités de FIV qui mettent en œuvre la biopsie TE entre les mains d’opérateurs peu expérimentés et en raison d’une charge de travail quotidienne modérée-faible.
L’injection de spermatozoïdes intracytoplasmatic (ICSI)8 devrait être une technique consolidée si l’objectif de mener des analyses génétiques dans la FIV. De même, un système de culture approprié pour récolter en toute sécurité les embryons au stade blastocyste est crucial pour la mise en œuvre de la stratégie de biopsie TE. Un nombre suffisant d’incubateurs, ainsi que l’utilisation de faible tension d’oxygène sont des conditions préalables clés à cette fin, de ne pas compromettre le taux de blastocyste9. En même temps, un programme de cryoconservation efficace est nécessaire pour gérer en toute sécurité un cycle pgT. Au cours de la dernière décennie, la mise en œuvre de la vitrification a augmenté les taux de cryo-survie des embryons, même jusqu’à 99 %10,11. Cela a fourni suffisamment de temps pour effectuer des tests génétiques et reporter le transfert d’embryons au cycle menstruel suivant, sur un endomètre non stimulé et probablement plus réceptif12.
La biopsie TE et la vitrification exigent des tâches exigeantes et leur efficacité peut varier d’un opérateur inexpérimenté à l’autre. Une période de formation spécifique est donc préconisée avant de permettre à chaque opérateur d’effectuer ces interventions cliniquement; en outre, le maintien des compétences des opérateurs devrait être évalué périodiquement en surveillant les indicateurs de performance clés (KPI) pour les procédures de cryoconservation et de biopsie. Chaque clinique de FIV doit définir les indicateurs de la santé interne à cette fin, qui doivent se rapprocher de ceux publiés par les consortiums internationaux et/ou des résultats publiés par les laboratoires de référence.
La biopsie TE, le réchauffement de la vitrification et les procédures de témoignage sont des techniques validées dans notre unité, qui ont été normalisées dans tous les opérateurs impliqués comme indiqué dans trois publications précédentes11,13,14 .
Seuls les embryologistes qualifiés expérimentés qui ont terminé leur période de formation devraient effectuer la biopsie TE et la vitrification blastocyste. De plus, un témoin est tenu de surveiller les procédures et de garantir une traçabilité efficace pendant i) les mouvements du blastocyste biopsié du plat de biopsie (figure supplémentaire 1) au plat post-biopsie (figure supplémentaire1 ), puis à la plaque de vitrification (figure supplémentaire 1) et en…
The authors have nothing to disclose.
AG et RM ont recueilli les données et rédigé le manuscrit. DC a analysé les données, rédigé les résultats représentatifs, effectué les statistiques et révisé le manuscrit. L’UMF et LR ont fourni une discussion critique des résultats et de l’ensemble du manuscrit.
Equipment | |||
Cold tube rack | Biocision | XTPCR96 | |
Electronic pipette controller | Fisher Scientific | 710931 | |
Flexipet adjustable handle set | Cook | G18674 | Stripper holder |
Gilson Pipetman | Gilson | 66003 | p20 |
IVF Electronic Witness System | CooperSurgical Fertility & Genomic Solutions | RI Witness ART Management System | |
Inverted microscope | Nikon | Eclipse TE2000-U | |
Laminar Flow Hood | IVF TECH | Grade A air flow | |
Laser objective | RI | Saturn 5 | |
Microinjectors | Nikon Narishige | NT-88-V3 | |
Mini centrifuge for PCR tubes | Eppendorf | CSLQSPIN | for 0.2ml PCR tubes |
Stereomicroscope | Leica | Leica M80 | |
Thermostat | Panasonic | MCO-5AC-PE | |
Tri-gas incubator | Panasonic | MCO-5M-PE | 02/CO2 |
Consumables | |||
Biopsy pipette | RI | 7-71-30FB35720 | 30µm ID, flat 35°C |
Cryolock | Cryolock | CL-R-CT | |
CSCM complete | Irvine Scientific | 90165 | IVF culture medium supplemented with HSA |
Embryo Transfer Catheter | Cook | G17934 | |
Flexipet pipette | Cook | G26712 | 140µm stripping pipette tip |
Flexipet pipette | Cook | G46020 | 300µm stripping pipette tips |
Holding pipette | RI | 7-71-IH35/20 | 30µm ID, flat 35°C |
Human Serum Albumin | Irvine Scientific | 9988 | |
IVF One well dish | Falcon | 353653 | |
Mineral Oil for embryo culture | Irvine Scientific | 9305 | |
Modified HTF Medium | Irvine Scientific | 90126 | Hepes-Buffered medium |
Nuclon Delta Surface | Thermofisher scientific | 176740 | IVF dish 4-well plate with sliding lid |
Primaria Cell culture dish | Corning | 353802 | 60x15mm |
Reproplate | Kitazato | 83016 | |
Serological pipette | Falcon | 357551 | 10ml |
Sterile disposable Gilson tips | Eppendorf | 0030 075.021 | 200µl |
Tubing Kit | Provided by the genetic lab | PCR tubes (0.2mL), loading solution, biopsy washing solution | |
Vitrification media | Kitazato | VT801 | Equilibration and vitrification solutions |
Warming media | Kitazato | VT802 | Thawing and dilution solutions |