Представлен метод синтеза целлюлозы нановолокна биошаблонированных композитных аэрогелей палладия. Полученные в результате композитные аэрогелиматериалы могут быть связаны с катализом, зондированием и применением водородного газа.
Здесь представлен метод синтеза целлюлозы нановолокна биошаблонированных композитных аэрогелей палладия. Благородные методы синтеза аэрогеля металла часто приводят к хрупким аэрогелям с плохим контролем формы. Использование карбоксиметилированной целлюлозы нановолокна (CNFs) для формирования ковалентно кабального гидрогеля позволяет сократить металлические ионы, такие как палладий на CNFs с контролем над наноструктурой и макроскопической формой монолита аэрогеля после сверхкритической Сушки. Перекрестное соединение карбоксиметилированного целлюлозы нановолокна достигается с помощью 1-этил-3-(3-диметиламинопропил) карбодиамида гидрохлорида (ЭДК) в присутствии этиленедиамин. Гидрогели CNF поддерживают свою форму на протяжении всего синтеза этапов, включая ковалентные перекрестные ссылки, уравновешенности с ионами прекурсоров, снижение металла с высокой концентрацией, ополчивание в воде, обмен растворителя этанола, и CO2 сверхкритической сушки. Изменение концентрации ионного прекурсора палладия позволяет контролировать содержание металла в окончательном аэрогелевом композите путем прямого сокращения ионного химического вещества, а не полагаться на относительно медленный конесценцию предварительно сформированных наночастиц, используемых в других соль-гель методы. С диффузией в качестве основы для внедрения и удаления химических видов в и из гидрогеля, этот метод подходит для небольших объемных геометрий и тонких пленок. Характеристика целлюлозы нанофибры-палладия композитных аэрогелей со сканирующей электронной микроскопией, рентгеновской диффрактометрией, термическим гравиметрическим анализом, адсорпированием азотного газа, электрохимической спектроскопией импеданса и циклической вольтэмметрией указывает на высокую площадь поверхности, металлизированную пористую структуру палладия.
Aerogels, впервые сообщил Кистлер, предлагают пористые структуры порядка величины менее плотной, чем их коллеги сыпучих материалов1,2,3. Благородные металлические аэрогели привлекают научный интерес к их потенциалу в области энергетики и энергии, каталитических и сенсорных приложений. Благородные металлические аэрогели недавно были синтезированы с помощью двух основных стратегий. Одна из стратегий заключается в том, чтобывызвать слияние предварительно сформированных наночастиц 4,5,6,7. Слияние наночастиц из соль-геля может определяться молекулами связующим звеном, изменениями в ионнойпрочности раствора или простой наночастицой поверхности свободной энергии минимизации 7,8,9. Другая стратегия заключается в формировании аэрогелей в одномшаге к сокращению от металлических решений прекурсоров 9,10,11,12,13. Этот подход также был использован для формирования биметаллических и сплавов благородных металлических аэрогелей. Первая стратегия, как правило, медленно и может потребовать до многих недель для наночастиц coalescence14. Подход прямого сокращения, хотя, как правило, более быстрый, страдает от плохого контроля формы над макроскопическим моногелем аэрогеля.
Один из возможных подходов синтеза для решения проблем с контролем благородного металла аэрогеля макроскопической формы и наноструктуры заключается в использовании биотемпляции15. Биотемпляция использует биологические молекулы, начиная от коллагена, желатина, ДНК, вирусов, до целлюлозы, чтобы обеспечить шаблон направления формы для синтеза наноструктур, где в результате металлические наноструктуры берут на геометрию биологический шаблон молекулы16,17. Целлюлозные нановолокна привлекательны как биошаблон, учитывая высокое естественное изобилие целлюлозных материалов, их высокое соотношение сторон линейной геометрии, и способность химически функционализации их глюкозы мономеры18,19, 20,21,22,23. Целлюлозные нановолокна (CNF) были использованы для синтеза трехмерных TiO2 нанопроводов для фотоанодов24, серебряные нанопровода для прозрачной бумажной электроники25, и палладий аэрогеля композиты для катализа26 . Кроме того, tempo-окисленные нановолокна целлюлозы были использованы как в качестве биошаблона, так и в качестве редуктора при приготовлении палладия, украшенного аэрогелями CNF27.
Здесь, метод синтеза целлюлозы нановолокна биошаблонированных палладия композитных аэрогелей представлен26. Хрупкие аэрогели с плохим управлением формой происходит для диапазона благородных методов синтеза металлического аэрогеля. Carboxymethylated целлюлозных нановолокон (CNFs), используемых для формирования ковалентного гидрогеля позволяют сокращение ионов металла, таких как палладий на CNFs, обеспечивая контроль над наноструктурой и макроскопической форме монолита аэрогеля после сверхкритической сушки. Карбоксиметилированный целлюлозно-волокнистый перекрестное соединение достигается с помощью 1-этил-3-(3-диметиламинопропил) карбодиимидгидродида гидрохлорида (EDC) в присутствии этиленедиамин в качестве связующее молекулы между CNFs. Гидрогели CNF поддерживают свою форму на протяжении всего синтеза этапов, включая ковалентные перекрестные ссылки, уравновешенности с ионами прекурсоров, снижение металла с высокой концентрацией, ополчивание в воде, обмен растворителя этанола, и CO2 сверхкритической сушки. Прекурсории ионной концентрации изменения позволяет контролировать окончательное содержание аэрогеля металла через прямое сокращение иона, а не полагаться на относительно медленное слияние предварительно сформированных наночастиц, используемых в методах соль-гель. С диффузией в качестве основы для внедрения и удаления химических видов в и из гидрогеля, этот метод подходит для небольших объемных геометрий и тонких пленок. Характеристика целлюлозы нанофибры-палладия композитных аэрогелей со сканирующей электронной микроскопией, рентгеновской диффрактометрией, термическим гравиметрическим анализом, адсорпированием азотного газа, электрохимической спектроскопией импеданса и циклической вольтэмметрией указывает на высокую площадь поверхности, металлизированную пористую структуру палладия.
Представленный здесь благородный метод синтеза нановолокна целлюлозы нановолокна приводит к стабильному аэрогелю композитов с настраиваемым металлическим составом. Ковалентное перекрестное соединение уплотненных целлюлозных нановолокон после центрифугирования приводит к гидрог…
The authors have nothing to disclose.
Авторы благодарны доктору Стивену Бартолуччи и доктору Джошуа Мауреру в Лаборатории Бенета армии США за использование их сканирующего электронного микроскопа. Эта работа была поддержана грантом Фонда исследований развития факультета от Военной академии Соединенных Штатов в Вест-Пойнте.
0.5 mm platinum wire electrode | BASi | MW-4130 | Used for auxillery electrode and separately for lacquer coating and use as a working electrode |
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) | Sigma-Aldrich | 1892-57-5 | |
2-(N-morpholino)ethanesulfonic acid (MES) | Sigma-Aldrich | 117961-21-4 | |
Ag/AgCl (3M NaCl) Reference Electrode | BASi | MF-2052 | |
Carboxymethyl cellulose, TEMPO Cellulose Nanofibrils, Dry Powder | University of Maine Process Development Center | No 8 | |
Ethanol, 200 proof | PHARMCO-AAPER | 241000200 | |
Ethylenediamine | Sigma-Aldrich | 107-15-3 | |
Fourier-Transform Infrared (FTIR) Spectrometer, Frontier | Perkin Elmer | L1280044 | |
Hydrochloric Acid | CORCO | 7647-01-0 | |
Na2PdCl4 | Sigma-Aldrich | 13820-40-1 | |
NaBH4 | Sigma-Aldrich | 16940-66-2 | |
Pd(NH3)4Cl2 | Sigma-Aldrich | 13933-31-8 | |
Potentiostat | Biologic-USA | VMP-3 | Electrochemical analysis-EIS, CV |
Scanning Electron Mciroscope (SEM) Helios 600 Nanolab | ThermoFisher Scientific | ||
Supercritical Dryer | Leica | EM CPD300 | Aerogel supercritical drying with CO2 |
Surface and Pore Analyzer | Quantachrome | NOVA 4000e | Nitrogen gas adsorption |
Thermal Gravimetric Analysis | TA instruments | TGA Q500 | |
Ultrasonic Cleaner | MTI | EQ-VGT-1860QTD | |
XRD | PanAlytical | Empyrean | X-ray diffractometry |