Изолированные мозга капилляров из ткани человеческого мозга может использоваться как доклинические модель для изучения барьерную функцию физиологические и патофизиологические условиях. Здесь мы представляем оптимизированный протокол изолировать капилляров мозга от ткани свежий человеческого мозга.
Понимание blood – brain барьер функция физиологического и патофизиологические условиях имеет решающее значение для развития новых терапевтических стратегий, которые открывают для улучшения доставки лекарств мозга, улучшить защиту мозга и лечения головного мозга расстройства. Однако изучая человека blood – brain барьер функция является сложной задачей. Таким образом существует острая необходимость соответствующих моделей. В этой связи капилляров мозга, изолированы от человеческого мозга ткани представляют собой уникальный инструмент для изучения барьерную функцию как недалеко от положения человека в естественных условиях максимально. Здесь мы описываем оптимизированный протокол изолировать капилляров из ткани мозга человека в высокий урожай и неизменно высокое качество и чистоту. Капилляры изолированы от свежих человеческий мозг ткани с помощью механической гомогенизации, градиент плотности центрифугирования и фильтрации. После изоляции капилляры человеческий мозг может использоваться для различных приложений, включая утечки анализов, живых клеток и иммунной основе анализов для изучения белков и функции, активности ферментов или внутриклеточная сигнализация. Изолированные человеческий мозг капилляров являются уникальной модели для выяснения регуляции функции человека гематоэнцефалический барьер. Эта модель может обеспечить понимание патогенеза центральной нервной системы (ЦНС), которая будет способствовать развитию терапевтических стратегий для лечения расстройства ЦНС.
Blood – brain барьер представляет собой жестко контролируемой интерфейс между кровью и мозга, которая определяет, что попадает в и выходит из мозга. Анатомически эндотелиальные клетки составляют blood – brain барьер и образует комплекс, непрерывной капиллярной сети. Физиологически капиллярная сеть поставляет мозга кислородом и питательными веществами при одновременно утилизации углекислого газа и продуктов обмена веществ. Важно отметить, что доказательства подтверждают, что изменения в барьер вклад многочисленных патологий, в том числе болезни Альцгеймера, эпилепсия и инсульта1,2,3,4,5 , 6 , 7. мозга, эндотелиальные клетки также служат барьером для лечения путем блокирования поглощения наркотиков в мозг, например., химиотерапии глиобластомы мультиформной после опухоль резекции8,9, 10. В этой связи изолированных человеческий мозг капилляры представляют собой уникальный ex vivo гематоэнцефалического барьера модель, напоминающей барьерные свойства в-vivo, который позволяет для изучения барьерной функции и дисфункции в области здравоохранения и болезни. В этой статье мы предоставляем протокол изолировать капилляров мозга от человеческого мозга в неизменно высокое качество капилляров и выход для изучения blood – brain барьер.
В 1969 году Siakotos и др. 11 были первыми сообщить изоляции капилляров мозга от ткани говядину и человеческого мозга, используя плотность градиентного центрифугирования и стекла бисера столбец разделения. Позже, Гольдштейн и др. 12 улучшить этот метод, добавив несколько фильтрации шаги для уменьшения количество ткани, необходимых для изучения капилляров мозга, изолированные от крыс, сохраняя при этом метаболической активности транспорта глюкозы. С тех пор исследователи оптимизированы процедуры капиллярного изоляции много раз, улучшение капиллярного модель метод и мозг с каждой итерации по13,,1415. К примеру, Pardridge и др. 16 изолированные говядину капилляров с помощью ферментативного пищеварения, а не механической гомогенизации, а затем впоследствии передается капиллярного подвеска через сетчатый фильтр 210 мкм и стеклянный шарик столбец. Эти изменения улучшить пятно исключения Трипановый синий изолированных мозга капилляров и таким образом повысить жизнеспособность эндотелиальных клеток. В начале 90-х годов Даллера и др. 17 изолированных говядину и крыса капилляров, которые были ясно нейрональных загрязнения и поддерживается метаболической активности, gamma-глютамил транспептидаза (γ-GTase) и щелочной фосфатазы. В 2000 году Миллер и др. 18, используется изолированных крыса и свиного мозга капилляров в сочетании с confocal микроскопии Показать накопление транспорта субстратов в просвете капилляров. Впоследствии наша лаборатория продолжает оптимизировать процедуры капиллярного изоляции мозга и мы создали транспорта анализов для определения Р-гликопротеина (P-gp)19,20,21, рак молочной железы сопротивление белка (BCRP)22,23и множественной лекарственной устойчивости белка 2 (Mrp2)24 транспортной деятельности. В 2004 году мы опубликовали два доклада, где мы использовали изолированные крыса капилляров мозга для расследования различных сигнальных путей. В Hartz и др. 21, мы обнаружили, что пептид эндотелина-1 быстро и обратимо сократить функции транспорта P-gp в капилляров мозга, действуя через эндотелина рецептор B (BET) рецептор, синтаза оксида азота (NOS) и Протеинкиназа С (PKC). В Бауэр и др. 19, мы продемонстрировали выражение рецептора pregnane X ядерных рецепторов (PXR) и показал PXR-модуляция функции P-gp выражение и транспорта в капилляров мозга. В экспериментах с трансгенных мышей гуманизированные PXR мы расширили эту линию исследований и показал в естественных условиях ужесточения барьера по upregulating P-gp через hPXR активации25. В 2010 году Hartz и др. 26 использовать этот подход для восстановления P-gp белков и перевозочная деятельность трансгенных человеческих амилоида прекурсоров протеина (Хапп) мышей, которые overexpress hAPP. Кроме того восстановление P-gp в hAPP мышей значительно сокращен40бета амилоида (значения) и значения42мозга уровнях.
Помимо изучения сигнальных путей, изолированные мозга капилляров может использоваться для определения изменений в проницаемость капилляров, который мы называем капиллярной утечки. В частности Техас красный утечки пробирного используется для оценки утечки Люминесцентную краску, Техас красный от капиллярного просвета со временем и эти данные затем используются для анализа масштабов утечки. Увеличение капиллярной утечки, по сравнению с теми из капилляров управления указывают изменения в физической неприкосновенности blood – brain барьер2. Это ценно, потому что есть многочисленные государства болезни, связанные с нарушением барьер, например., эпилепсия, рассеянный склероз, болезнь Альцгеймера и черепно-мозговой травмы27,28,29, 30. Другие группы также использовали изолированные капилляров различать сигнальных путей, которые регулируют выражение протеина и транспортной деятельности белки31,,3233,34, 35,,3637. Наконец мы продолжаем оптимизировать этот метод для изоляции капилляров мозга человека, и недавно мы показали увеличение выражение P-gp на человека blood – brain барьер у пациентов с эпилепсией, по сравнению с захватом свободных управления лиц38 . Взятые вместе, эти события свидетельствуют, что изолированные мозга капилляров может служить универсальная модель для изучения барьерную функцию.
Различные in vivo, ex vivoи в пробирке blood – brain барьер модели были использованы в фундаментальные исследования и промышленные наркотиков скрининг, главным образом с целью тестирования доставки лекарств в мозг39,40,41 ,42,,4344. В дополнение к изолированной ex vivo капилляров мозга текущие blood – brain барьер модели включают в silico модели, в пробирке клеточной культуры изолированных мозга капиллярных эндотелиальных клеток или увековечен клеточных линий из различных видов, в пробирке культуры человеческих плюрипотентных стволовых клеток (hPSC), которые дифференцируются в капиллярных эндотелиальных клеток мозга и microfluidic модели на чипе.
В silico модели наиболее часто используются в разработке лекарств для отбора кандидатов наркотиков на основе прогнозируемых поглощения, распределение, метаболизм и экскрецию (ADME) свойства. Методы, такие как количественные структура свойства отношения (QSPR) и количественные структура активность отношения (QSAR) модели являются популярные методы, используемые в высокопроизводительного скрининга библиотек для прогнозирования мозга проникновения наркотиков кандидатов 45 , 46. Эти модели являются полезными для экрана молекул барьер проникновения свойств.
Betz и др. 47 создана монослои искусственный мозг капиллярных эндотелиальных клеток как система гематоэнцефалического барьера модель в пробирке . В vitro клетки культуры моделей с использованием свежие ткани или увековечен эндотелиальных клеток линии как эндотелиальные клетки человеческого мозга microvessel (hCMECs) может быть еще одним инструментом высокопроизводительного скрининга для проникновения мозга или механистической исследования. Однако модели культуры капиллярных эндотелиальных клеток мозга не хватает физиологического касательное напряжение внутри просвета капиллярного кровотока, ограничены в целом биологических сложности и претерпевают изменения в выражение и локализация компонентов важный барьер такие жесткие соединения белков поверхности рецепторы, транспортеры, ферменты и ионных каналов48,,4950. И наоборот эндотелиальных монослои, производный от hPSCs, имеют низкий сахарозы проницаемости по сравнению с hCMEC/D3 культур и содержат поляризованные выражение некоторых blood – brain барьер перевозчиков, молекулы адгезии и плотных51, 52. Однако, эти клетки также подлежат изменению свойств в культуре, и системы должны быть проверены для своего резюме в vivo барьерные свойства52.
Новые тенденции в blood – brain барьер исследования включают в себя использование систем 3D культуры ткани для создания искусственных капилляров, используя технологию орган на чипе для создания microfluidic приборы, или используя полые волокна технологии53, 54 , 55. искусственные капилляров, однако, имеют значительно больших диаметров (100 – 200 мкм) чем капилляров мозга (3 – 7 мкм). Следовательно, сдвига силы в vitro не напоминают полностью ситуацию в естественных условиях . Этот вопрос рассматривается в «blood-brain-barrier-on-a-chip» microfluidic приборы, где искусственных оболочек формы «кровь» и «мозг» отсеков и жидкости перекачивается через эти устройства генерации microfluidic сдвига. Аналогичным образом, Сопредседатель культур клеток сосудистой гладкой мускулатуры и эндотелиальных клеток в различных комбинациях с Астроциты также были использованы с технологией полые волокна для воссоздания реологические параметры под в vivo условий56 , 57 , 58. Однако, неясно, насколько хорошо эта модель отражает другие свойства blood – brain барьер, таких, как транспорт, метаболизм, сигнализации и др. Эти искусственные капилляров и чип модели подходят для высокопроизводительного скрининга наркотиков, но и ячейки, используемые для создания этих моделей также могут изменяться во время культуры.
Замороженные и фиксированной мозга ломтиками или первичного мозга, которые культур капиллярных эндотелиальных клеток являются дополнительные модели, которые могут использоваться дляизучения человеческого microvasculature5,59,,6061. Например иммуногистохимия фиксированной мозговой ткани, используется для определения белков локализации и выражение в здоровых по сравнению с пораженной ткани.
Помимо тканей срезы и модели в пробирке капилляров мозга свежевыделенных, описанные выше могут быть использованы для изучения функции гематоэнцефалического барьера. Ограничения этой изолированной капиллярного модели включают в себя трудности, чтобы получить свежие человеческий мозг ткани, отсутствие астроциты и нейронов и относительно длительной изоляции процесса. Преимущество капилляра модели изолированных мозга состоит в том, что эта модель напоминает ситуацию в естественных условиях и, следовательно, может использоваться для характеристики барьерной функции и дисфункции. Важно отметить, что она может использоваться также различать сигнальных механизмов, с помощью множества анализов и молекулярных методов3,19,,6263.
Наша лаборатория имеет доступ к ткани как свежие и замороженные человеческий мозг через Сандерс-Браун центр по проблемам старения (СИБ #B15-2602-M)64. В этом контексте вскрытия следовать стандартным протоколом, мозги, полученные в < 4 h и все процедуры соответствуют руководящим принципам наилучшей практики NIH биопрепаратов65. Этот уникальный доступ к ткани человеческого мозга, мы создан и оптимизирован протокол изолировать капилляров мозга от ткани человеческого мозга, что приводит к высокой урожайности нетронутыми, жизнеспособных человеческий мозг капилляров. Две общих конечных точек интереса должны определить выражение протеина и деятельности. В этой связи мы и другие создали различные анализы, которые могут использоваться с изолированной черепно-мозговой капилляров для изучения белков и уровень активности. Эти анализы включают в себя Западный blotting, простой Западной пробирного, энзим соединенный assay иммуносорбента (ELISA), обратная транскрипция полимеразной цепной реакции (ПЦР), количественные полимеразной цепной реакции (ПЦР), Зимография, анализов деятельности транспорта, и капиллярной утечки анализов. Эти анализы позволяют исследователям изучить изменения в функции барьера в патологических условиях жизни людей, определить пути, которые регулируют выражение протеина и деятельности и определить фармакологических цели для лечения blood – brain барьер связанные заболевания.
Вместе, в свежей изолированных мозга капилляров может служить в качестве надежных и воспроизводимых моделью blood – brain барьер. Особенно эта модель может сочетаться с много различных анализов для определения широкий спектр конечных точек для изучения барьерную функцию.
Настоящий Протокол описывает изоляции нетронутыми и жизнеспособной человеческий мозг капилляров из свежих ткани. В этом разделе мы подробно обсудить следующее: 1) изменения к протоколу, 2) устранение общих ошибок, 3) ограничения техники, 4) значение модели в отношении существующих и альт?…
The authors have nothing to disclose.
Мы благодарим и признать д-р Питер Нельсон и Соня Андерсон на берегу ткани мозга Великобритании-ADC для предоставления всех человеческий мозг образцы тканей (номер гранта NIH: P30 AG028383 из Национального института по проблемам старения). Мы благодарим Matt Hazzard и Tom Долан, информационные технологии, научные технологии и участия факультет, Университет Кентукки графический помощи. Этот проект получил поддержку номер 1R01NS079507 грант от национального института неврологических нарушений и инсульта (чтобы B.B.) и номер 1R01AG039621 грант от национального института по проблемам старения (до A.M.S.H.). Содержание является исключительно ответственности авторов и не обязательно отражают официальную точку зрения Национальный институт неврологических расстройств и инсульта или Национальный институт по проблемам старения. Авторы заявляют не конкурирующих финансовых интересов.
Personal Protective Equipment (PPE) | |||
Diamond Grip Plus Latex Gloves, Microflex Medium | VWR, Radnor, PA, USA | 32916-636 | PPE |
Disposable Protective Labcoats | VWR, Radnor, PA, USA | 470146-214 | PPE; due to the nature of the human source material, the use of a disposable lab coat is recommended |
Face Shield, disposable | Thermo Fisher Scientific, Pittsburgh, PA, USA | 19460102 | PPE; due to the nature of the human source material, the use of a disposable face shield is recommended |
Safety Materials | |||
Clavies High-Temperature Autoclave Bags 8X12 | Thermo Fisher Scientific, Pittsburgh, PA, USA | 01-815-6 | |
Versi Dry Bench Paper 18" x 20" | Thermo Fisher Scientific, Pittsburgh, PA, USA | 14-206-32 | to cover working areas |
VWR Sharps Container Systems | Thermo Fisher Scientific, Pittsburgh, PA, USA | 75800-272 | for used scalpels |
Bleach 8.2% Clorox Germicidal 64 oz | UK Supply Center, Lexington, KY, USA | 323775 | |
Equipment | |||
4°C Refrigerator | Thermo Fisher Scientific, Pittsburgh, PA, USA | 13-986-148 | |
Accume BASIC AB15 pH Meter | Thermo Fisher Scientific, Pittsburgh, PA, USA | AB15 | |
Heidolph RZR 2102 Control | Heidolph, Elk Grove Village, IL, USA | 501-21024-01-3 | |
Sorvall LEGEND XTR Centrifuge | Thermo Fisher Scientific, Pittsburgh, PA, USA | 75004521 | |
Leica L2 Dissecting Microscope | Leica Microsystems Inc, Buffalo Grove IL, USA | used to remove meninges | |
POLYTRON PT2500 Homogenizer | Kinematica AG, Luzern, Switzerland | 9158168 | |
Scale P-403 | Denver Instrument, Bohemia, NY, USA | 0191392 | |
Standard mini Stir | Thermo Fisher Scientific, Pittsburgh, PA, USA | 1151050 | |
Thermo-Flasks Liquid Nitrogen Dewar | Thermal Scientific, Mansfiled, TX, USA | 11-670-4C | used to freeze the tissue? |
Voyager Pro Analytical Balance | OHAUS, Parsippany, NJ, USA | VP214CN | |
ZEISS Axiovert Microcope | Carl Zeiss, Inc Thornwood, NY, USA | used to check isolated capillaries | |
Tools and Glassware | |||
Finnpipette II Pipette 1-5mL | Thermo Fisher Scientific, Pittsburgh, PA, USA | 21377823T1 | wash capillaries off filter |
Finnpipette II Pipette 100-1000 µL | Thermo Fisher Scientific, Pittsburgh, PA, USA | 21377821T1 | resuspend pellet in BSA |
Pipet Boy | Integra, Hudson, NH, USA | 739658 | |
50mL Falcon tubes 25/rack – 500/cs | VWR, Radnor, PA, USA | 21008-951 | |
EISCO Scalpel Blades | Thermo Fisher Scientific, Pittsburgh, PA, USA | S95938C | to mince brain tissue |
PARAFILM | VWR, Radnor, PA, USA | 52858-000 | to cover beaker and volumetric flask |
Thermo Scientific Finntip Pipet Tips 5 ml | Thermo Fisher Scientific, Pittsburgh, PA, USA | 21-377-304 | to wash capillaries off filter |
60 ml syringe with Luer-Lok | Thermo Fisher Scientific, Pittsburgh, PA, USA | BD309653 | used with connector ring to filter capillaries |
Scalpel Handle #4 | Fine Science Tools, Foster City, CA, USA | 10060-13 | used for mincing |
Dumont Forceps #5 | Fine Science Tools, Foster City, CA, USA | 11251-10 | used to remove meninges |
Potter-Elvehjem Tissue Grinder | Thomas Scientific, Swedesboro, NJ, USA | 3431E25 | 50 ml volume, clearance: 150-230 μm |
Dounce Homogenizer | VWR, Radnor PA USA | 62400-642 | 15 ml volume, clearance: 80-130 μm |
Spectra/Mesh Woven Filters (300 µm) | Spectrum Laboratories, Rancho Dominguez, CA, USA | 146424 | Used to filter capillary suspension to remove any meninges that may be left |
pluriStrainers (pore size: 30 µm) | pluriSelect Life Science, Leipzig, Germany | 43-50030-03 | |
Connector Ring | pluriSelect Life Science, Leipzig, Germany | 41-50000-03 | reuse multiple time |
1 l Volumetric Flask | for preparation of Isolation Buffer | ||
1 l Beaker | for preparation of 1% BSA | ||
Stir Bar | for preparation of 1% BSA and Ficoll® | ||
Schott Bottle (60 ml) | for preparation of Ficoll® | ||
Ice Bucket | to keep everything cold | ||
100 mm Petri Dish | for mincing of brain tissue | ||
Tissue Culture Cell Scraper | VWR, Radnor, PA, USA | 89260-222 | to remove supernatant after centrifugation |
Chemicals | |||
BSA Fraction V, A-9647 | Sigma-Aldrich, St. Louis, MO, USA | A9647-500g | prepare in DPBS with Ca2+ & Mg2+ the day before. Avoid bubbles during preparation. Store in the refrigerator. Slowly stir for 10 min before use. |
DPBS with Ca2+ & Mg2+ | Hyclone | SH30264.FS | DPBS – part of the Isolation Buffer |
Ficoll PM400 | Sigma-Aldrich, St. Louis, MO, USA | F4375 | Exact measurement is important here. Weigh out in bottle with stir bar. Shake vigurously after adding DPBS. Keep in the fridge O/N. It will be clear in the morning. Stir gently for 10-15 min before use. Keep on ice until use. |
Glucose (D-(+) Dextrose) | Sigma-Aldrich, St. Louis, MO, USA | G7528 | Glucose (D-(+) Dextrose) Concentration: 5 mM |
Sodium Hydroxide Standard Solution | Sigma-Aldrich, St. Louis, MO, USA | 71474 | to adjust pH of the DPBS |
Sodium Pyruvate | Sigma-Aldrich, St. Louis, MO, USA | P2256 | Concentration: 1 mM |