Summary

Sintesi di 1,2-Azaborines e la preparazione dei loro complessi proteici con T4 lisozima Mutants

Published: March 25, 2017
doi:

Summary

A protocol for the synthesis of 1,2-azaborines and the preparation of their protein complexes with T4 lysozyme mutants is presented.

Abstract

We describe a general synthesis of 1,2-azaborines using standard air-free techniques and protein complex preparation with T4 lysozyme mutants by vapor diffusion. Oxygen- and moisture-sensitive compounds are prepared and isolated under an inert atmosphere (N2) using either a vacuum gas manifold or a glove box. As an example of azaborine synthesis, we demonstrate the synthesis and purification of the volatile N-H-B-ethyl-1,2-azaborine by a five-step sequence involving distillation and column chromatography for the isolation of products. T4 lysozyme mutants L99A and L99A/M102Q are expressed with Escherichia coli RR1 strain. Standard protocols for chemical cell lysis followed by purification using carboxymethyl ion exchange column affords protein of sufficiently high purity for crystallization. Protein crystallization is performed in various concentrations of precipitant at different pH ranges using the hanging drop vapor diffusion method. Complex preparation with the small molecules is carried out by vapor diffusion method under an inert atmosphere. X-ray diffraction analysis of the crystal complex provides unambiguous structural evidence of binding interactions between the protein binding site and 1,2-azaborines.

Introduction

Boro-contenenti azoto eterocicli (vale a dire 1,2-azaborines) hanno recentemente attirato notevole attenzione come isosteri di areni. Questo isosteria può portare alla diversificazione dei motivi strutturali esistenti per ampliare lo spazio chimica 2, 3, 4. Azaborines hanno potenziale utilità per l'applicazione nella ricerca biomedica 5, 6, 7, 8, in particolare nel campo della chimica medicinale che i chimici svolgono sintesi di librerie di molecole strutturalmente e funzionalmente pertinenti. Significativamente, tuttavia, mentre ci sono numerose vie sintetiche ben sviluppati a molecole contenenti arene disponibili, sono stati riportati solo un numero limitato di metodi per la sintesi di azaborines 9, 10, </sup> 11, 12, 13. Ciò è dovuto principalmente ad un numero limitato di opzioni per la sorgente di boro e l'aria e la natura all'umidità sensibile della molecola nella fase iniziale della sequenza sintetica.

Nella prima parte di questo articolo, descriveremo una sintesi multi-scala grammo di N -TBS- B Cl-1,2-azaborine (3) utilizzando tecniche senza aria standard. Questo composto serve come intermedio versatile che può essere ulteriormente funzionalizzati al strutturalmente più complesse molecole 14, 15. Partendo da 3, verranno descritte la sintesi e la purificazione di N -H- B etil-1,2-azaborine (5) per l'uso in studi di legame proteico. Data la volatilità del 5, il suo isolamento efficace richiede un controllo preciso della temperatura di reazione, tempo e distillation condizioni.

Nella seconda parte, protocolli per l'espressione della proteina e l'isolamento di mutanti T4 lisozima (L99A L99A e / M102Q) 17, 18, 19, saranno presentati 20, seguita da cristallizzazione delle proteine e la preparazione di complessi di cristallo proteina-ligando. Mutanti T4 lisozima L99A L99A e / M102Q sono stati scelti come sistemi modello biologico per esaminare la capacità di idrogeno incollaggio di NH contenente molecole azaborine 17. Utilizzando un protocollo standard di biologia molecolare, la proteina è espressa in ceppo Escherichia coli RR1 e indotta con isopropil-β-D-1-thiogalactopyranoside (IPTG). Purificazione di proteine ​​viene effettuata utilizzando scambio ionico cromatografia su colonna. Protein cristallizzazione viene effettuata con soluzione altamente concentrata purificata proteine ​​(> 95% di purezza mediante elettroforesi su gel) usando l'attaccaturacadere metodo diffusione del vapore. A causa della sensibilità dei ligandi di questo studio all'ossigeno, i complessi proteina-ligando sono preparati sotto condizioni di assenza di aria.

Protocol

NOTA: Tutte le manipolazioni ossigeno e sensibili all'umidità sono state effettuate in atmosfera inerte (N 2) utilizzando sia tecniche senza aria standard o un vano portaoggetti. THF (tetraidrofurano), Et 2 O (etere etilico), CH 2 Cl 2 (diclorometano), toluene, pentano e sono stati purificati facendo passare attraverso una colonna di allumina neutra sotto argon. Acetonitrile venne essiccata su CaH 2 (idruro di calcio) e distillato sotto atmosfera di azoto prima…

Representative Results

La via sintetica schema per 1,2-azaborines è mostrato in Figura 1. Questo protocollo si applica alla sintesi di cinque diverse molecole boro contenenti azoto. Figura 2 rappresenta 11 B NMR spettri misurati nel corso del passo 1.3 per monitorare la formazione del prodotto desiderato (3). Purificazione di proteine è stata effettuata utilizzando il sistema di cromatografia a bassa pressione ed un cromatogramma rappresentativo ?…

Discussion

Nella prima parte di questo protocollo, abbiamo descritto una sintesi modificata del 1,2-azaborines basate su metodi precedentemente riportati 12, 13. Triallylborane 22 è stato utilizzato come sostituto per le rotte che utilizzano allyltriphenyl stagno o di potassio allyltrifluoroborate per preparare N -allyl- N -TBS- B -allyl cloruro addotto (1). Questo metodo consente un approccio più atomi-…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Institutes of Health NIGMS (R01-GM094541) and Boston College.

Materials

Tetrahydrofuran (THF), inhibitor-free, for HPLC, ≥99.9% Sigma Aldrich 34865
Diethyl ether (Et2O), for HPLC, ≥99.9%, inhibitor-free Sigma Aldrich 309966
Methylene chloride  (CH2Cl2), (Stabilized/Certified ACS) Fisher D37-20
Toluene Fisher T290-4
Pentane, HPLC Fisher P399-4
Acetonitrile Fisher A21-4
Calcium hydride (CaH2), reagent grade, 95% Sigma Aldrich 208027 Pyrophoric
Palladium on activated carbon (Pd/C), 10 wt% Pd Strem 46-1900
1.0 M Boron trichloride solution in hexane Sigma Aldrich 211249 Highly toxic/ Pyrophoric
Triethylamine, ≥99.5% Sigma Aldrich 471283
Grubbs 1st generation catalyst  materia C823
Acetamide Sigma Aldrich A0500
n-Butanol, anhydrous, 99.8% Sigma Aldrich 281549
Ethyllithium solution, 0.5 M in benzene/cyclohexane Sigma Aldrich 561452 Highly toxic/ Pyrophoric
HCl solution, 2.0 M in Et2O Sigma Aldrich 455180
2-Methylbutane, anhydrous, ≥99% Sigma Aldrich 277258
Escherichia coli, (Migula) Castellani and Chalmers (ATCC® 31343™) ATCC 31343
T4 lysozyme WT* (L99A) Addgene 18476
T4 lysozyme mutant (S38D L99A M102Q N144D) Addgene 18477
Ampicillin sodium salt Sigma Aldrich A0166
isopropyl-β-D-1-thiogalactopyranoside (IPTG)  Invitrogen AM9464
Sodium phosphate monobasic  anhydrous Fisher BP329
Sodium Phosphate dibasic anhydrous Fisher BP332
Sodium chloride Fisher S642212 
Ethylenediaminetetraacetic acid Fisher BP118
Magnesium chloride Sigma Aldrich M4880 Corrosive
Thermo scientific pierce DNaseI Fisher PI-90083
GE Healthcare Sepharose Fast Flow Cation Exchange Media Fisher 45-002-931
Tris-base Fisher BP152-500 
Sodium azide TCI S0489 Highly toxic
2-Mercaptoethanol Fisher ICN806443 
Sartorius Vivaspin 20 Centrifugal Concentrators Fisher 14-558-501
Potassium phosphate monobasic Sigma Aldrich P5379
2-Hydroxyethyl disulfide Sigma Aldrich 380474
N-paratone  Hampton Research HR2-643
4 RC Dialysis Membrane Tubing 12,000 to 14,000 Dalton MWCO  Fisher 08-667E
 CryoLoop Hampton Research cryogenic tubing shaped into a loop
CryoTong Thermo Fisher cryogenic tong
Coot Electron density images are generated from the software

References

  1. Ducruix, A., Giége, R. . Crystallization of Nucleic Acids and Proteins, A Practical Approach. , (1992).
  2. Bosdet, M. J. D., Piers, W. E. B-N as a C-C substitute in aromatic systems. Can. J. Chem. 87 (1), 8-29 (2009).
  3. Campbell, P. G., Marwitz, A. J., Liu, S. -. Y. Recent Advances in Azaborine Chemistry. Angew. Chem. Int. Ed. 51 (25), 6074-6092 (2012).
  4. Wang, X. -. Y., Wang, J. -. Y., Pei, J. B. N. Heterosuperbenzenes: Synthesis and Properties. Chem. Eur. J. 21 (9), 3528-3539 (2015).
  5. Zhou, H. -. B., et al. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Chem. Biol. 14 (6), 659-669 (2007).
  6. Ito, H., Yumura, K., Saigo, K. Synthesis, characterization, and binding property of isoelectronic analogues of nucleobases, B(6)-substituted 5-aza-6-borauracils and -thymines. Org. Lett. 12 (15), 3386-3389 (2010).
  7. Vlasceanu, A., Jessing, M., Kilburn, J. P. BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. 23 (15), 4453-4461 (2015).
  8. Rombouts, F. J., Tovar, F., Austin, N., Tresadern, G., Trabanco, A. A. Benzazaborinines as Novel Bioisosteric Replacements of Naphthalene: Propranolol as an Example. J. Med. Chem. 58 (23), 9287-9295 (2015).
  9. Culling, G. C., Dewar, M. J. S., Marr, P. A. New Heteroaromatic Compounds. XXIII. Two Analogs of Triphenylene and a Possible Route to Borazarene. J. Am. Chem. Soc. 86 (6), 1125-1127 (1964).
  10. White, D. G. 2-Phenyl-2,1-borazarene and Derivatives of 1,2-Azaboracycloalkanes. J. Am. Chem. Soc. 85 (22), 3634-3636 (1963).
  11. Ashe III, A. J., Fang, X. A Synthesis of Aromatic Five- and Six-Membered B−N Heterocycles via Ring Closing Metathesis. Org. Lett. 2 (14), 2089-2091 (2000).
  12. Marwitz, A. J. V., Matus, M. H., Zakharov, L. N., Dixon, D. A., Liu, S. -. Y. A Hybrid Organic/Inorganic Benzene. Angew. Chem. Int. Ed. 48 (5), 973-977 (2009).
  13. Abbey, E. R., Lamm, A. N., Baggett, A. W., Zakharov, L. N., Liu, S. -. Y. Protecting Group-Free Synthesis of 1,2-Azaborines: A Simple Approach to the Construction of BN-Benzenoids. J. Am. Chem. Soc. 135 (34), 12908-12913 (2013).
  14. Rudebusch, G. E., Zakharov, L. N., Liu, S. -. Y. Rhodium-catalyzed boron arylation of 1,2-azaborines. Angew. Chem. Int. Ed. 52 (35), 9316-9319 (2013).
  15. Brown, A. N., Li, B., Liu, S. -. Y. Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl. J. Am. Chem. Soc. 137 (28), 8932-8935 (2015).
  16. Knack, D. H. BN/CC Isosteric Compounds as Enzyme Inhibitors: N- and B-Ethyl-1,2-azaborine Inhibit Ethylbenzene Hydroxylation as Non-Convertible Substrate Analogs. Angew. Chem. Int. Ed. 52 (9), 2599-2601 (2013).
  17. Eriksson, A. E. Response of a Protein Structure to Cavity-Creating Mutations and Its Relation to the Hydrophobic Effect. Science. 255 (5041), 178-183 (1992).
  18. Eriksson, A. E., Baase, W. A., Wozniak, J. A., Matthews, B. W. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature. 355 (6358), 371-373 (1992).
  19. Morton, A., Baase, W. A., Matthews, B. W. Energetic Origins of Specificity of Ligand Binding in an Interior Nonpolar Cavity of T4 Lysozyme. Biochemistry. 34 (27), 8564-8575 (1995).
  20. Wei, B. Q., Baase, W. A., Weaver, L. H., Matthews, B. W., Shoichet, B. K. A Model Binding Site for Testing Scoring Functions in Molecular Docking. J. Mol. Biol. 322 (2), 339-355 (2002).
  21. Lee, H., Fischer, M., Shoichet, B. K., Liu, S. -. Y. Hydrogen Bonding of 1,2-Azaborines in the Binding Cavity of T4 Lysozyme Mutants: Structures and Thermodynamics. J. Am. Chem. Soc. 138 (37), 12021-12024 (2016).
  22. Brown, H. C., Racherla, U. S. Organoboranes. 43. A Convenient, Highly Efficient Synthesis of Triorganylboranes via a Modified Organometallic Route. J. Org. Chem. 51 (4), 427-432 (1986).
  23. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685 (1970).
  24. Liu, L., Baase, W. A., Matthews, B. W. Halogenated Benzenes Bound within a Non-polar Cavity in T4 Lysozyme Provide Examples of I.S and I.Se Halogen-bonding. J. Mol. Biol. 385 (2), 595-605 (2009).

Play Video

Cite This Article
Lee, H., Liu, S. Synthesis of 1,2-Azaborines and the Preparation of Their Protein Complexes with T4 Lysozyme Mutants. J. Vis. Exp. (121), e55154, doi:10.3791/55154 (2017).

View Video