Summary

Vasodilatatie van geïsoleerde Schepen en de isolatie van de extracellulaire matrix van Tight-skin Muizen

Published: March 24, 2017
doi:

Summary

We describe the isolation of cardiac extracellular matrix from C57Bl/6J control mice, tight-skin mice, and tight-skin mice treated with the IRF5 inhibitory peptide. We also describe the vasodilation studies on the isolated vessels from C57Bl/6J, tight-skin mice and tight-skin mice treated with the IRF5 inhibitory peptide.

Abstract

The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5’s ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides.

IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.

Introduction

Regulatie van celgroei en celdood immuunresponsen staat centraal in de rol van de transcriptiefactor familie van interferon regulerende factoren. IRF5 staat aangegeven als cruciaal voor de regulatie van immuunresponsen tussen type 1, een inflammatoire respons stimuleren en type 2, een immuunreactie gericht weefselherstel. IRF5 is belangrijk bij kanker 1, en autoimmuniteit 2, 3, 4, 5.

De strakke huid muis (Tsk / +) is een model voor weefsel fibrose en sclerodermie als gevolg van een verdubbeling mutatie in het fibrillin-1-gen. Deze mutatie resulteert in een strakke huid en een toename van bindweefsel. Deze muizen ontwikkelen myocardiale ontsteking, fibrose en uiteindelijk hartfalen 5, 6, 7,> 8, 9. Scleroderma is een auto-fibrotische aandoening die ongeveer 150.000 patiënten in de Verenigde Staten 6. De kenmerken van deze ziekte fibrose van organen zoals het hart 7, 8, 9, 10, 11.

De aard van de studie eiste het ontwerp van een remmend peptide. De software aanpak werd verkozen boven een traditionele benadering waarbij een faagdisplay. De software benadering is eenvoudiger en minder tijdrovend. De RCSB databank wordt gebruikt om geschikte bindingsplaatsen 12 identificeren. De interactie van de nieuw ontworpen peptide met het recombinante eiwit te bestuderen en te focussen op de binding parameters, werd een techniek genaamd biolayer interferometrie gebruikt. Biolayer interferometrie is een biosensor gebaseerd techniqUE die bepaalt bindingsaffiniteit, vereniging en dissociatie met behulp van een biosensor en een bindend monster. De biosensor kan fluorescent, luminescent, radiometrisch en colorimetrisch gelabeld. De meting is gebaseerd op massa toevoeging of depletie lijkt associatie en dissociatie 13, 14. Het doel van deze studie was de rol van IRF5 myocardiale ontsteking en fibrose begrijpen. Het doel was om inzicht te krijgen in de rol van IRF5 in de ontwikkeling van weefsel fibrose en sclerodermie.

Protocol

Dit onderzoek is uitgevoerd in strikte overeenstemming met de aanbevelingen in de Gids voor de Zorg en gebruik van proefdieren van de National Institutes of Health uitgevoerd. Het protocol werd goedgekeurd door de Institutional Animal Care en gebruik Comite (Protocol: AUA # 1517). Alle onderzoek met muizen werd uitgevoerd in overeenstemming met de PHS beleid. 1. Ontwerp van Decoy Peptide Vind de IRF5 de 3D-structuur en de basis van het ontwerp op het. Ontwerp een 17 mer, genaamd IRF5D (ELDWDADDIRLQIDN…

Representative Results

De resultaten aangetoond in figuur 1 zien hoe een peptide ontwerpen. Figuur 1, linksboven toont het gebied (tussen de 2 gele pijlen, aminozuren (aa) 425-436) in IRF5 dat wordt gefosforyleerd door een aantal kinasen. Figuur 1, rechtsboven, toont een gele ovaal, waar gefosforyleerd domein IRF5's bindt. De dimere structuur van 3DSH werd gedraaid om een ​​gespleten of de vallei aan de linkerkant van de Helix 2 (aa303-312) in acht nem…

Discussion

Het doel was om een ​​IRF5 remmer te ontwerpen om de rol van IRF5 op ontsteking, fibrose, en vasculaire functie in de harten van Tsk / + muizen helderen. De bevindingen zijn dat IRF5D geen proliferatie of apoptose induceerde. Bovendien werd inflammatie verminderd en vasculaire functie verbeterd. Deze gegevens suggereren dat IRF5 speelt een belangrijke mechanistische rol in de ontwikkeling van ontsteking en fibrose in het hart van Tsk / + muizen en dat het de potentie om te dienen als een therapeutisch doelwit.

<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants HL-089779 (DW), HL-112270 (KAP) and HL-102836 (KAP) and Cimphoni Life Sciences (part of DW salary). The authors thank Meghann Sytsma for editing the manuscript.

Materials

 Triton X 100 Sigma Aldrich X100- 100ml
Alexa 488-labeled goat anti-mouse IgG antibody  Thermo Fisher A11001
Bardford reagent Thermo Fisher 23200 Pierce 
Biosensors Forte-Bio MR18-0009
CD64 (H-250) Santa Cruz Biotechnologies sc-15364
CellEvent Caspase-3/7 Substrate Thermo Fisher/Life Technologies C10427
CellTiter AQueous One Solution Cell Proliferation Assay kit Promega G3580 Promega
DAPI (4′,6-diamidino-2-phenylindole) Thermo Fisher D-1306 1:1000 dilution in PBS
donkey anti rat Alexa 488 Thermo Fisher A-21208 1:1000 dilution in PBS
ECL plus GE healthcare/Amersham RPN2133 After a lot of trial and error we came back to this one
Eclipse TE 200-U microscope with EZ C1 laser scanning software Nikon
goat anti rabbit Alexa 488 Thermo Fisher A-11008 1:1000 dilution in PBS
HRP  anti-goat Santa Cruz Biotechnologies sc-516086 !:10000 dilution in TBS
HRP donkey anti-mouse Santa Cruz Biotechnologies sc-2315 1:10000 dilution in TBS
ICAM-1 antibody Santa Cruz Biotechnologies sc-1511 1:200 dilution in PBS
IRF5 antibody (H56) Santa Cruz Biotechnologies sc-98651
Micro plate reader Elx800 Biotek
NIMP neutrophil marker Santa Cruz Biotechnologies sc-133821 1:200 dilution in PBS
Octet RED Forte Bio protein-protein binding
Peptide design  Medit SA software RCSB.org
Recombinant IRF5 protein synthesis TopGene Technologies protein expression, synthesis service
sodium dodecyl phosphate Sigma Aldrich 436143 detergent
Ketamine Pharmacy Schedule III controlled substance, presciption required 
Xylazine MedVet
3.5X-45X Trinocular Dissecting Zoom Stereo Microscope with Gooseneck LED Lights Am Scope SKU: SM-1TSX-L6W
Zeba Desalting Columns Thermofisher 2161515
Endothelial Basal Media EBM Bullet kit Lonza CC-3124 kit contains growth supplemets
VIA-100K  Boeckeler Instruments
4-15% TGX gel Bio-Rad 5671081
MedSuMo software Medit, Palaiseau, France
Laemmli Buffer BioRad

References

  1. Bi, X., et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res. 13 (6), 111 (2011).
  2. Dideberg, V., et al. An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum Mol Genet. 16 (24), 3008-3016 (2007).
  3. Graham, R. R., et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat.Genet. 38 (5), 550-555 (2006).
  4. Krausgruber, T., et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12 (3), 231-238 (2011).
  5. Eames, H. L., Corbin, A. L., Udalova, I. A. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl Res. 167 (1), 167-182 (2016).
  6. Mayes, M. D., et al. Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis. Am J Hum Genet. 94 (1), 47-61 (2014).
  7. Dimitroulas, T., et al. Micro-and Macrovascular Treatment Targets in Scleroderma Heart Disease. Curr Pharm Des. , (2013).
  8. Botstein, G. R., LeRoy, E. C. Primary heart disease in systemic sclerosis (scleroderma): advances in clinical and pathologic features, pathogenesis, and new therapeutic approaches. Am Heart J. 102 (5), 913-919 (1981).
  9. Oram, S., Stokes, W. The heart in scleroderma. Br Heart J. 23 (3), 243-259 (1961).
  10. Xu, H., et al. 4F decreases IRF5 expression and activation in hearts of tight-skin mice. PLoS One. 7 (12), 52046 (2012).
  11. Steen, V. The heart in systemic sclerosis. Curr.Rheumatol.Rep. 6 (2), 137-140 (2004).
  12. Deshpande, N., et al. The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33, D233-D237 (2005).
  13. Concepcion, J., et al. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb Chem High Throughput Screen. 12 (8), 791-800 (2009).
  14. Matthew, A. Current biosensor technologies in drug discovery. Drug Discovery. , 69 (2006).
  15. Doppelt-Azeroual, O., Moriaud, F., Adcock, S. A., Delfaud, F. A review of MED-SuMo applications. Infect Disord Drug Targets. 9 (3), 344-357 (2009).
  16. Kim, S., Jang, J., Yu, J., Chang, J. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine. 28 (22), 3801-3808 (2010).
  17. Frenzel, D., Willbold, D. Kinetic Titration Series with Biolayer Interferometry. PloS one. 9 (9), 106882 (2014).
  18. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  19. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 72 (1-2), 248-254 (1976).
  20. Bauer, P. M., et al. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J.Biol.Chem. 278 (17), 14841-14849 (2003).
  21. Weihrauch, D., et al. An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice. PLoS One. 11 (4), 0151999 (2016).
  22. Hoogenboom, H. R., et al. Antibody phage display technology and its applications. Immunotechnology. 4 (1), 1-20 (1998).
  23. Roehm, N. W., Rodgers, G. H., Hatfield, S. M., Glasebrook, A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 142 (2), 257-265 (1991).
  24. Van Tonder, A., Joubert, A. M., Cromarty, A. D. Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 8 (1), 1 (2015).
  25. Ott, H. C., et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  26. Ou, J., et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 107 (18), 2337-2341 (2003).
  27. Weihrauch, D., et al. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol. 293 (3), 1432-1441 (2007).
  28. Roy, S., P, P., Mavragani, C. IRF-5 – A New Link to Autoimmune Diseases. Autoimmune Disorders – Pathogenetic Aspects. , 35 (2011).

Play Video

Cite This Article
Weihrauch, D., Krolikowski, J. G., Jones, D. W., Zaman, T., Bamkole, O., Struve, J., Pagel, P. S., Lohr, N. L., Pritchard, Jr., K. A. Vasodilation of Isolated Vessels and the Isolation of the Extracellular Matrix of Tight-skin Mice. J. Vis. Exp. (121), e55036, doi:10.3791/55036 (2017).

View Video