We describe the isolation of cardiac extracellular matrix from C57Bl/6J control mice, tight-skin mice, and tight-skin mice treated with the IRF5 inhibitory peptide. We also describe the vasodilation studies on the isolated vessels from C57Bl/6J, tight-skin mice and tight-skin mice treated with the IRF5 inhibitory peptide.
The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5’s ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides.
IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.
Regulation of cell growth and cell death immune responses is central to the role of the transcription factor family of interferon regulatory factors. IRF5 is highlighted as being crucial for the regulation of immune responses between type 1, an inflammatory promoting response and type 2, an immune response targeting tissue repair. IRF5 is key in cancer1, and autoimmunity2,3,4,5.
The tight-skin mouse (Tsk/+) is a model for tissue fibrosis and scleroderma due to a duplication mutation in the fibrillin-1 gene. This mutation results in a tight-skin and an increase in connective tissue. These mice develop myocardial inflammation, fibrosis and finally heart failure5,6,7,8,9. Scleroderma is an autoimmune fibrotic disorder affecting approximately 150,000 patients in the United States6. The hallmarks of this disease are fibrosis of internal organs including the heart7,8,9,10,11.
The nature of the study demanded the design of an inhibitory peptide. The software approach was chosen over a traditional approach using a phage display. The software approach is easier and less time consuming. The RCSB data bank is used to identify appropriate binding sites12. To study the interaction of the newly designed peptide with the recombinant protein and to focus on the binding parameters, a technique called biolayer interferometry was used. Biolayer interferometry is a biosensor based technique that determines binding affinity, association and disassociation using a biosensor and a binding sample. The biosensor can be fluorescently, luminescently, radiometrically and colorimetrically labeled. The measurement is based on mass addition or depletion resembling association and disassociation13,14. The aim of this study was to understand the role of IRF5 in myocardial inflammation and fibrosis. The goal was to gain insight into the role of IRF5 in the development of tissue fibrosis and scleroderma.
This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee (Protocol: AUA#1517). All research involving mice was conducted in conformity with PHS policy.
1. Design of Decoy Peptide
2. Biolayer Interferometry (BLI)
NOTE: The purification for recombinant IRF5 was outsourced.16
3. Apoptosis and Proliferation Assays
4. Assessment of the IRF5 and ICAM-1 Expression in the Heart
5. Assessment of Inflammatory Cell Numbers after IRF5 Inhibition
6. Cell Dependent Vasodilation after IRF5 Inhibition
7. Isolation of Cardiac Extracellular Matrix
8. Assessment of Nuclear Translocation by Immunohistochemistry
9. Statistics
The results demonstrated in Figure 1 show how to design a peptide. Figure 1, upper left, shows the region (between the 2 yellow arrows, amino acids (aa) 425-436) in IRF5 that is phosphorylated by a number of kinases. Figure 1, upper right, shows a yellow oval where IRF5's phosphorylated domain binds. The dimeric structure of 3DSH was rotated to observe a cleft or valley to the left of the Helix 2 (aa303-312). This is where the phospho-tail domain of IRF5 is supposed to bind when it is fully activated (i.e., serine phosphorylated), forming a homodimer and its assumed biologically active state.
In Figure 2, the binding activity measured by biolayer interferometry is depicted. To determine that the decoy peptide IRF5D is not toxic, proliferation and apoptosis were assessed after treating the cells with increasing concentrations of IRF5D (Figure 3). ICAM-1, an inflammatory marker, and IRF5 expressions were reduced after treating the Tsk/+ mice with IRF5D as determined by western blot analysis (Figure 4). The number of neutrophils (NIMP) and CD64 were decreased as determined by immunohistochemistry after treatment with IRF5D (Figure 5). Endothelial function was improved in facialis arteries of Tsk/+ mice after IRF5D compared to Tsk/+ mice without IRF5D treatment (Figure 6). Greater numbers of IRF5 positive nuclei in myocytes cultured on Tsk/+ cardiac matrix were visualized compared to C57BL/6J cardiac matrix. Treatment of the cultures with IRF5D resulted in reduced number of IRF5 positive nuclei (Figure 7).
Figure 1: 3D Protein Structure of IRF5. A) The upper left figure shows the region the peptide was designed for. B) The region which is being phosphorylated highlighted by the two yellow arrows are amino acids (aa) 425 – 436 in IRF5. C) The lower panel depicts the homodimeric functional complex. The homodimeric figure is presented for easier viewing of the region where the phosphorylated tail domain of IRF5 binds to form a homodimer. This figure has been previously published21. Please click here to view a larger version of this figure.
Figure 2: Biolayer Interferometry of IRF5D. This figure shows the binding of IRF5 to IRF5D assessed by biolayer interferometry. Analysis software showed that IRF5 binds to IRF5D with a Kd of 3.72 ± 0.75 x 10-6 M (mean ± SD, n = 3). This figure has been previously published21. Please click here to view a larger version of this figure.
Figure 3: Cell Proliferation and Apoptosis. These bar graphs show that increasing concentrations of IRF5D have no influence on cell proliferation (left) or apoptosis (right), and were not altered by increasing levels of IRF5D. This figure has been previously published21 (mean ± SD, p < 0.05, n = 4). Please click here to view a larger version of this figure.
Figure 4: ICAM-1 and IRF5 Expression in the Heart. ICAM-1 (A) and IRF5 (B) expressions were decreased in the myocardium of Tsk+ mice after IRF5D treatment as demonstrated by western blot. The data was normalized to the actin loading control (mean ± SD, p < 0.05, n = 3). This figure has been previously published21. Please click here to view a larger version of this figure.
Figure 5: CD64 (A) and NIMP (B) Expression in the Heart. The number of monocytes/macrophages and neutrophils was decreased after IRF5D treatment as demonstrated by immunohistochemistry (mean ±SD, * = p<0.05, C57BL/6J vs. Tsk/+; # = p<0.025, Tsk/+ vs. Tsk/+ + IRF5D; n=3, 10 images per antibody). The arrows highlight monocytes/macrophages (A) and neutrophils (B). The scale bars are 10 µm. This figure has been previously published21. Please click here to view a larger version of this figure.
Figure 6: Cell Function and Vasodilation. IRF5D administration improved acetylcholine induced vasodilation of facialis arteries of Tsk/+ mice (mean ± SD, p < 0.05, n = 6). This figure has been previously published21. Please click here to view a larger version of this figure.
Figure 7: IRF5 Nuclear Translocation of IRF5 in Cultured Myocytes with IRF5 inhibition. IRF5 inhibition by IRF5D (50 µg/mL, 24 h) leads to fewer IRF5 positive nuclei in myocytes cultured on Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix. The arrows depict IRF5 positive nuclei (mean ± SD, p < 0.05, n = 3). The scale bar is 5 µm. This figure has been previously published21. Please click here to view a larger version of this figure.
The goal was to design an IRF5 inhibitor to elucidate the role of IRF5 on inflammation, fibrosis, and vascular function in the hearts of Tsk/+ mice. The findings are that IRF5D did not induce proliferation or apoptosis. Moreover, inflammation was reduced and vascular function improved. These data suggest that IRF5 plays an important mechanistic role in the development of inflammation and fibrosis in the heart of Tsk/+ mice and that it has the potential to serve as a therapeutic target.
The first step was to design an inhibitor. When a peptide is designed, several points have to be taken into consideration: sequence length, secondary structure, residues prone to oxidation, amino acid composition, amidation and capping, amino acids in the N-terminus and amino acids in the C-terminus, and ligand attachment. The ideal sequence length is between 10 to 15 residues to ensure best overall yield, fewer impurities, and reduced cost. It is important to be aware of secondary structures like beta sheet formation. Beta sheet formation can result in a high degree of deleted sequences. Avoid residues prone to oxidation which can lead to side reactions which can impact the effectiveness of the peptide. To control solubility, synthesis, and purification, keep the composition of the amino acid building blocks for the peptide below 50% hydrophobic amino acids and ensure that there are enough charged residues. N- and C- termini need to be chosen in an uncharged state. Avoid glutamate at the N-terminus and avoid cysteine, proline, and glycine at the C-terminus. Add a spacer between the peptide and ligand to minimize folding. Therefore, they might need to be masked as an amide without charge.
IRF5D design was based on the 3D structure. A 17 mer, termed IRF5D (ELDWDADDIRLQIDNPD) was designed, where aspartate (D) was substituted for serine (S) to mimic phosphorylation in IRF5 at 421-438 (ELSWSADSIRLQISNPD). This approach is straight forward due to novel computer technology. The drawback of this technique is the initial investment in the software. However, there are significant overall savings when compared with the costs associated with labor and materials used in other inhibitor design methods, like phage display22. The critical step in this process is the availability of the 3D structure of the target protein and its possible binding sites. The limitation of designing an inhibitor is the possibility that a wrong region is chosen and the inhibitor is not blocking the desired protein. The other possibility is a partial blocking of the desired protein.
With the peptide in hand the focus moves to testing the toxicity of the decoy peptide by measuring cell survival. First, IRF5D was tested using varying concentrations. IRF5D does not induce apoptosis and does not promote proliferation even at higher concentrations. The methods used here are standard and give reliable data. The tetrazolium dye bioreduction has been used for many years23. This assay was chosen because of its reproducibility and time-effectiveness as compared to other methods, e.g., counting cells manually which is very time-consuming. Using BrdU to label proliferating cells requires radioactivity, which is sensitive, but can be hazardous. The tetrazolium dye bioreduction is time-efficient and does not require radioactivity. The limitations of the tetrazolium dye bioreduction is prevalent in studies involving oxido-reductive potential. Wherever oxido-reductive potential occurs, false positives are more frequent24.
The isolation of the extracellular matrix was acquired by dissolving all myocardial cells with a hypertonic solution. The protocol was evolved from studies using a perfusion apparatus to a simple agitation process25. The duration was assessed empirically by taking different time points: 12, 14, 16, 18, 20 h. The extracellular matrix was analyzed for cell debris after the different time points25. The main pitfalls of decellularization are fungal and bacterial contamination. It is advised to use anti-fungal and anti-microbial compounds. To coat dishes, the extracellular matrix is powderized and suspended in PBS. Due to the high content of elastic material, the sample does not completely dissolve. Sonication on higher intensity settings without heating up the sample is imperative. The advantage of using extracellular matrix over other coating agents is that the extracellular matrix is an amalgamation of proteins physiologically occurring and it connects the in vivo and in vitro assays. This approach is more physiological than coating with a single compound like collagen or fibronectin alone. It also gives insight into the importance of signaling initiated by changes in the extracellular matrix. A limitation of this protocol is clearly the destruction of the matrix and removing important signaling components from the matrix. It is imperative to be cautious when decellularizing the matrix.
The use of intact tissue like isolated vessels opens up the possibility to study vasodilation in situ and with minimal interference of enzymes. This method is most adequate to study endothelial function in a variety of animals and diseases. Duling was the first to describe this method in pigs. The vessels in pig are deep in the tissue; hence the paper described the gelatin fixation. Early studies in vasodilation used carotid arteries26. We refined the technique to use facialis arteries27. Facialis arteries are more equivalent in size to a resistance artery than the carotid artery. A limitation of this protocol is the fragility of the vessel, which needs to be removed intact requiring practice.
In summary, developing IRF5D enabled us to assess the involvement of IRF5 in inflammation and fibrosis in the heart. This resulted in the data depicted in this study. IRF5D is a useful tool to study the mechanisms of IRF5 in various diseases as well as suggests IRF5 as a possible drug target28.
The authors have nothing to disclose.
This work was supported by NIH grants HL-089779 (DW), HL-112270 (KAP) and HL-102836 (KAP) and Cimphoni Life Sciences (part of DW salary). The authors thank Meghann Sytsma for editing the manuscript.
Triton X 100 | Sigma Aldrich | X100- 100ml | |
Alexa 488-labeled goat anti-mouse IgG antibody | Thermo Fisher | A11001 | |
Bardford reagent | Thermo Fisher | 23200 | Pierce |
Biosensors | Forte-Bio | MR18-0009 | |
CD64 (H-250) | Santa Cruz Biotechnologies | sc-15364 | |
CellEvent Caspase-3/7 Substrate | Thermo Fisher/Life Technologies | C10427 | |
CellTiter AQueous One Solution Cell Proliferation Assay kit | Promega | G3580 | Promega |
DAPI (4′,6-diamidino-2-phenylindole) | Thermo Fisher | D-1306 | 1:1000 dilution in PBS |
donkey anti rat Alexa 488 | Thermo Fisher | A-21208 | 1:1000 dilution in PBS |
ECL plus | GE healthcare/Amersham | RPN2133 | After a lot of trial and error we came back to this one |
Eclipse TE 200-U microscope with EZ C1 laser scanning software | Nikon | ||
goat anti rabbit Alexa 488 | Thermo Fisher | A-11008 | 1:1000 dilution in PBS |
HRP anti-goat | Santa Cruz Biotechnologies | sc-516086 | !:10000 dilution in TBS |
HRP donkey anti-mouse | Santa Cruz Biotechnologies | sc-2315 | 1:10000 dilution in TBS |
ICAM-1 antibody | Santa Cruz Biotechnologies | sc-1511 | 1:200 dilution in PBS |
IRF5 antibody (H56) | Santa Cruz Biotechnologies | sc-98651 | |
Micro plate reader Elx800 | Biotek | ||
NIMP neutrophil marker | Santa Cruz Biotechnologies | sc-133821 | 1:200 dilution in PBS |
Octet RED | Forte Bio | protein-protein binding | |
Peptide design Medit SA software | RCSB.org | ||
Recombinant IRF5 protein synthesis | TopGene Technologies | protein expression, synthesis service | |
sodium dodecyl phosphate | Sigma Aldrich | 436143 | detergent |
Ketamine | Pharmacy | Schedule III controlled substance, presciption required | |
Xylazine | MedVet | ||
3.5X-45X Trinocular Dissecting Zoom Stereo Microscope with Gooseneck LED Lights | Am Scope | SKU: SM-1TSX-L6W | |
Zeba Desalting Columns | Thermofisher | 2161515 | |
Endothelial Basal Media EBM Bullet kit | Lonza | CC-3124 | kit contains growth supplemets |
VIA-100K | Boeckeler Instruments | ||
4-15% TGX gel | Bio-Rad | 5671081 | |
MedSuMo software | Medit, Palaiseau, France | ||
Laemmli Buffer | BioRad |