Summary

開発<em>インビトロ</em>アッセイは、間葉細胞受けた上皮間葉移行の収縮機能を評価します

Published: June 10, 2016
doi:

Summary

Here, we describe the development and application of a gel contraction assay for evaluating contractile function in mesenchymal cells that underwent epithelial-mesenchymal transition.

Abstract

Fibrosis is often involved in the pathogenesis of various chronic progressive diseases such as interstitial pulmonary disease. Pathological hallmark is the formation of fibroblastic foci, which is associated with the disease severity. Mesenchymal cells consisting of the fibroblastic foci are proposed to be derived from several cell sources, including originally resident intrapulmonary fibroblasts and circulating fibrocytes from bone marrow. Recently, mesenchymal cells that underwent epithelial-mesenchymal transition (EMT) have been also supposed to contribute to the pathogenesis of fibrosis. In addition, EMT can be induced by transforming growth factor β, and EMT can be enhanced by pro-inflammatory cytokines like tumor necrosis factor α. The gel contraction assay is an ideal in vitro model for the evaluation of contractility, which is one of the characteristic functions of fibroblasts and contributes to wound repair and fibrosis. Here, the development of a gel contraction assay is demonstrated for evaluating contractile ability of mesenchymal cells that underwent EMT.

Introduction

線維症は、間質性肺疾患、心臓線維症、肝硬変、末期腎不全、全身性硬化症、および自己免疫疾患の1のような種々の慢性進行性疾患の病因に関与しています。間質性肺炎のうち、特発性肺線維症(IPF)は慢性進行性疾患であり、予後不良を示しています。 IPFの病理学的特徴は予後と関連している活性化された線維芽細胞および筋線維芽細胞からなる線維芽細胞巣の開発です。このような肺の線維芽細胞の起源は、もともと常駐肺線維芽細胞及び骨髄から循環する線維細胞を含むいくつかの間葉系細胞に由来することが提案されています。最近、上皮間葉移行(EMT)は、間葉細胞2の形成に関連することが提案されている、および線維性疾患の病因に貢献します。

これは、と考えられているEMTは、腫瘍の浸潤および転移3を含む胎児の発育、創傷治癒、および癌の進行の過程で重要な役割を果たしています。 EMTのプロセスに続いて、上皮細胞は、E-カドヘリンなどの上皮マーカーの損失により、間葉系細胞の能力を取得し、そのようなビメンチンのような間葉マーカー、およびα平滑筋アクチン(SMA)4,5の発現による。以前の研究は、EMTプロセスは腎臓6および肺7における組織線維症の発症に関連しているという証拠を示しました。さらに、慢性炎症は、線維性疾患8を促進します 。さらに、腫瘍壊死因子スーパーファミリーメンバー14(TNFSF14、LIGHT)などの炎症性サイトカイン、腫瘍壊死因子(TNF)-α、インターロイキン1βは、EMT 9-12を増強することが示されています。

コラーゲンゲル収縮アッセイ線維芽細胞は、I型に埋め込まれたコラーゲンベースの細胞収縮アッセイコラーゲンゲル三次元、収縮性を評価するためのインビトロモデルにおける理想的です。収縮は、線維芽細胞の特徴的な機能の一つであり、正常な創傷修復および線維症13に貢献しています。このアッセイでは、線維芽細胞の付着は、いくつかの条件の下で機械的張力を生成することになっている私はインテグリン依存性のメカニズムを介して型コラーゲン、その結果、組織の収縮につながると考えられています。

ここで、ゲル収縮アッセイの開発は、EMTを受けた細胞における収縮機能の獲得を評価するように適合されることが報告されています。このレポートには、この修正されたアッセイは、EMTを経た間葉細胞で収縮性を評価するのに適していることを示しています。

Protocol

1.準備と文化肺上皮細胞の 10%ウシ胎児血清(FBS)、100 IU / mlペニシリン、および100μg/ mlストレプトマイシンを補充したダルベッコ改変イーグル培地(DMEM)中で培養A549ヒト肺上皮細胞(付着細胞株)。 取り外し、廃棄し、細胞培養培地を培養皿から5で1回洗浄 – リン酸緩衝生理食塩水(PBS)10mlの。洗浄後、すぐにPBSを吸引。 3分間CO 2を 2 mlのトリプシン/エチレ…

Representative Results

EMTの間に、上皮細胞は、E-カドヘリンなどの上皮マーカーを失い、そのようなビメンチンおよびα平滑筋アクチン4,5などの間葉系マーカーの発現を得ることができます。 TGF-β1及びTNF-αとのA549ヒト肺上皮細胞のインキュベーションは、EMTを誘導します。通常のA549細胞の出現は、上皮細胞( 図3A)の特徴である形状や三角形のような石畳ですが、TGF…

Discussion

本研究で開発されたプロトコルは、2つのステップを含みます。最初のステップは、第二段階は、ゲル収縮アッセイがあるが、EMTを誘導するために行われます。それは、細胞がEMTを受けたことを確認することが重要であるので、ステップ2は、形態学的および遺伝子発現の変化に優れた補数を提供します。以前の研究は、A549細胞のEMTは、TGF-β1のみ24によって誘導されたことを示しまし?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Tadashi Koyama for technical help. This work was supported in part by JSPS KAKENHI Grant Numbers 23249045, 15K09211, 15K19172; a grant to the Respiratory Failure Research Group from the Ministry of Health, Labour and Welfare, Japan; a grant for research on allergic disease and immunology, Japan.

Materials

DMEM sigma aldrich 11965-092 For A549 medium
FBS GIBCO 10437
Transforming Growth Factor-β1, Human, recombinant Wako Laboratory chemicals 209-16544
Recombinant Human TNF-α R&D systems 210-TA/CF
E-Cadherin (24E10) Rabbit mAb Cell Signaling Technology #3195 1:3000 dilution
Vimentin (D21H3) Rabbit mAb Cell Signaling Technology #5741 1:3000 dilution
Anti-α-Tubulin antibody sigma aldrich T9026 1:10000 dilution
Monoclonal Anti-Actin, α-Smooth Muscle antibody  sigma aldrich A5228 1:10000 dilution
Anti-N-cadherin antibody BD Transduction Laboratories #610920 1:1000 dilution
Anti-Mouse IgG, HRP-Linked Whole Ab Sheep (secondary antibody) GE Healthcare NA931-100UL 1:20000 dilution
Anti-Rabbit IgG, HRP-Linked Whole Ab Donkey (secondary antibody) GE Healthcare NA934-100UL 1:20000 dilution
blocking reagent GE Healthcare RPN418 2% in TBS-T
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lid corning #353046
100 mm cell culture dish TPP #93100
DMEM, powder life technologies 12100-046 For 4×DMEM
type 1 collagen gel Nitta gelatin Cellmatrix type I-A
24 well cell culture plate AGC TECHNO GLASS 1820-024
Gel Documentation System  ATTO AE-6911FXN Gel imager
gel analyzing software ATTO Densitograph, ver. 3.00 analysing software bundled with AE-6911FXN
Trypsin-EDTA (0.05%), phenol red life technologies 25300054
24 Well Plates, Non-Treated IWAKI 1820-024
Trypan Blue Solution, 0.4% life technologies 15250-061
RNA extraction kit Qiagen 74106
reverse transcriptase life technologies 18080044
real time PCR system Stratagene Mx-3000P
SYBR green PCR kit Qiagen 204145
Protease Inhibitor Cocktail (100X) life technologies 78429
PVDF membrane ATTO 2392390
protein assay kit bio-rad 5000006JA 
polyacrylamide gel ATTO 2331810
western blotting detection reagent GE Healthcare RPN2232
cold CCD camera ATTO Ez-Capture MG/ST
Trypsin inhibitor sigma aldrich T9003-100MG
Polyoxyethylene (20)Sorbitan Monolaurate Wako Laboratory chemicals 163-11512
polyoxyethylene (9) octyiphenyl ether Wako Laboratory chemicals 141-08321

References

  1. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. The Journal of pathology. 214, 199-214 (2008).
  2. Hardie, W. D., Glasser, S. W., Hagood, J. S. Emerging concepts in the pathogenesis of lung fibrosis. The American journal of pathology. 175, 3-16 (2009).
  3. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 125, 1795-1808 (2012).
  4. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  5. Kalluri, R., Weinberg, R. A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 119, 1420-1428 (2009).
  6. Forino, M., et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. International journal of experimental pathology. 87, 197-208 (2006).
  7. Yang, S., et al. Participation of miR-200 in pulmonary fibrosis. The American journal of pathology. 180, 484-493 (2012).
  8. Reynolds, H. Y. Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. American journal of respiratory and critical care medicine. 171, 98-102 (2005).
  9. Camara, J., Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & tissue repair. 3, 2 (2010).
  10. Kamitani, S., et al. Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. International archives of allergy and immunology. 155, 119-128 (2011).
  11. Mikami, Y., et al. Lymphotoxin beta receptor signaling induces IL-8 production in human bronchial epithelial cells. PloS one. 9, e114791 (2014).
  12. Yamauchi, Y., et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Experimental lung research. 36, 12-24 (2010).
  13. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology. 124, 401-404 (1994).
  14. Ramos, C., et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway . American journal of physiology. Lung cellular and molecular physiology. 299, L222-L231 (2010).
  15. Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., Du, W. S. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Bioscience reports. 35, (2015).
  16. Brinkmann, V., Kinzel, B., Kristofic, C. TCR-independent activation of human CD4+ 45RO- T cells by anti-CD28 plus IL-2: Induction of clonal expansion and priming for a Th2 phenotype. Journal of immunology. 156, 4100-4106 (1996).
  17. Krug, M. S., Berger, S. L. First-strand cDNA synthesis primed with oligo(dT). Methods in enzymology. 152, 316-325 (1987).
  18. Morozumi, M., et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of clinical microbiology. 44, 1440-1446 (2006).
  19. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 150, 76-85 (1985).
  20. Wiechelman, K. J., Braun, R. D., Fitzpatrick, J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry. 175, 231-237 (1988).
  21. Ursitti, J. A., Mozdzanowski, J., Speicher, D. W., et al. Electroblotting from polyacrylamide gels. Current protocols in protein science. Chapter 10, Unit 10.7 (2001).
  22. Kricka, L. J., Voyta, J. C., Bronstein, I. Chemiluminescent methods for detecting and quantitating enzyme activity. Methods in enzymology. 305, 370-390 (2000).
  23. Noguchi, S., et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 20, 4660-4672 (2014).
  24. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., Zhang, Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research. 6, 56 (2005).
  25. Chen, X., et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. The Journal of clinical investigation. 124, 3295-3310 (2014).
  26. Saito, A., et al. An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PloS one. 8, e56587 (2013).
  27. Dvashi, Z., et al. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. The American journal of pathology. 184, 2936-2950 (2014).
  28. Hallgren, O., et al. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. Journal of translational medicine. 10, 171 (2012).
  29. Kobayashi, T., et al. Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology. Lung cellular and molecular physiology. 306, L1006-L1015 (2014).
  30. Horie, M., et al. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Experimental lung research. 40, 222-236 (2014).
  31. Kohyama, T., et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. American journal of respiratory cell and molecular biology. 27, 375-381 (2002).
  32. Muir, A. B., et al. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental cell research. 330, 102-110 (2015).
  33. Zhong, Q., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. American journal of respiratory cell and molecular biology. 45, 498-509 (2011).
  34. Liu, X. Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell motility and the cytoskeleton. 65, 935-944 (2008).

Play Video

Cite This Article
Mikami, Y., Matsuzaki, H., Takeshima, H., Makita, K., Yamauchi, Y., Nagase, T. Development of an In Vitro Assay to Evaluate Contractile Function of Mesenchymal Cells that Underwent Epithelial-Mesenchymal Transition. J. Vis. Exp. (112), e53974, doi:10.3791/53974 (2016).

View Video