Summary

-Paso específica Clasificación de Ratón Espermátidas por Citometría de Flujo

Published: December 31, 2015
doi:

Summary

We describe a sorting strategy for mouse spermatids using flow cytometry. Spermatids are sorted into four highly pure populations, including round (spermiogenesis steps 1-9), early elongating (spermiogenesis steps 10-12), late elongating (spermiogenesis steps 13-14) and elongated spermatids (spermiogenesis steps 15-16). DNA staining, size and granulosity are used as selection parameters.

Abstract

La diferenciación de espermátidas de ratón es uno proceso crítico para la producción de un gameto masculino funcional con un genoma intacto para ser transmitido a la siguiente generación. Hasta ahora, los estudios moleculares de esta transición morfológica se han visto obstaculizados por la falta de un método que permite una separación adecuada de estos pasos importantes de la diferenciación espermátide para análisis posteriores. Los anteriores intentos de la selección adecuada de estas células usando citometría de flujo pueden haber sido difícil debido a un aumento en la fluorescencia peculiar ADN en espermátidas sometidos a remodelación de la cromatina. Sobre la base de esta observación, proporcionamos los detalles de un flujo sencillo citometría de esquema, lo que permite la purificación reproducible de cuatro poblaciones de espermátidas de ratón fijados con etanol, cada uno representando un estado diferente en el proceso de remodelación nuclear. Enriquecimiento de Población se confirma el uso de marcadores de pasos específicos y criterios morfológicos. Las espermátidas purificadas se pueden utilizar para genómico y proteomic analiza.

Introduction

Haploid round spermatids differentiate into spermatozoa by a process called spermiogenesis. This involves many different steps including the acquisition of a flagellum, chromatin and cytoskeleton remodeling, condensation of the nucleus as well as the loss of most of the cytoplasm. These unique cellular events must be finely regulated in order to produce a mature functional gamete with an intact genome suitable for fertilization. Spermiogenesis can hardly be studied in vitro since no reliable cell culture system has so far been able to support progression through the different steps of the process. Moreover, actual in vitro techniques lead to a poor yield1,2. In vivo, proper transitions through the different steps of spermiogenesis are crucial for the natural functional integrity of the male gamete. Successful purification of spermatids according to their differentiation steps has never been accomplished with a level of enrichment sufficient to allow molecular characterization of spermiogenesis. For instance, purification of key steps of the spermatidal differentiation would be especially useful to study the developing acrosome, formation of the midpiece3, cell junction dynamics4, RNA dynamics5, chromatin remodeling process6,7 or genomic stability8. Purification of spermatids has been hampered by their progressive morphological transformation, the lack of known stage-specific external biomarkers, and their peculiar shape and size.

Although most male germ cells display a direct relationship between DNA staining and ploidy (DNA content), we noticed that such positive correlation is no longer applicable to spermatids. This stems from our early observation that seminiferous tubule sections show variable intensity of DNA staining throughout the different spermiogenesis steps. Although DNA staining is consistent with their haploid set of chromosomes from spermiogenesis steps 1 to 7 (round spermatids), we observed a sharp increase in fluorescence intensity with DAPI or SYTO 16 around the onset of nuclear reorganization and chromatin remodeling (spermiogenesis step 8) reaching a peak at the onset of nuclear condensation (spermiogenesis steps 11-12). Following condensation of the nucleus, DNA staining intensity decreases until spermiation (spermiogenesis step 16). We surmised that this was likely associated with the formation of their peculiar chromatin structure transition where histones are replaced by protamines. We therefore developed a reliable flow cytometry method that allows the separation of spermatids using the variation of DNA intensity of spermatids as a main selection parameter.

A simple flow cytometry approach is described to separate mouse spermatids with high purity (95-100%) based on their apparent DNA content (SYTO16 staining), size and granulosity. Spermatids are separated into four populations; spermiogenesis steps 1-9, 10-12, 13-14 and 15-16. Purified spermatids are suitable for genetic/genomic analysis, as well as proteomic applications as described in a recent publication from our group9.

Protocol

Cuidado de los animales estaba en conformidad con el cuidado de los animales y el uso comité de la Universidad de Sherbrooke. 1. Preparación del tubo El día antes de la clasificación de células, añadir 1-2 ml de suero bovino fetal inactivado por calor (FBS) a 5 ml de polipropileno tubos de fondo redondo, y a 15 ml y 50 ml tubos cónicos de polipropileno. Paso crítico: Asegúrese de que todos los tubos utilizados en el protocolo es revestido. Nota: recub…

Representative Results

Estrategia de apertura de puerta se usa con citometría de flujo La Figura 1 representa la estrategia gating utilizado en citometría de flujo para clasificar cuatro poblaciones spermatid altamente puros. Brevemente, las células con tinción de ADN positivo (Alexa Fluor 488-A) se seleccionan en primer lugar con la Puerta 1. Espermátidas de espermiogénesis pasos son seleccionados 1-12 (puerta 2) en un gráfi…

Discussion

Células de espermatogénesis siempre han sido difíciles de estudiar debido a la complejidad del epitelio seminífero, así como el éxito limitado de cultivo in vitro. A través de los años, muchos enfoques para purificar se desarrollaron las células germinales a partir de diversas especies. Utilizando técnicas de sedimentación de purificación de la gravedad con Percoll o gradientes de albúmina de suero bovino por lo general proporcionan un buen rendimiento de células germinales intactas, pero carecen …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer al Dr. Leonid Volkov y Éric Bouchard por su asesoramiento técnico en relación con la microscopía de epifluorescencia.

Apoyo financiero

Financiado por los Institutos Canadienses de Investigación en Salud (subvención # MOP-93781) de GB

Materials

Isoflurane ABBOT 05260-05 For mouse anesthesia before euthanasia
Fetal bovine serum Wisent 90150 For tube coating
1X PBS
EDTA BioShop EDT For sorting buffer preparation
HEPES Sigma H For sorting buffer preparation
100 % Ethanol Les alcools de commerce 092-09-11N For cell fixation
SYTO 16 Life Technologies S7578 DNA staining
5 ml polypropylene round bottom tubes BD Falcon 352063 Sorted cells collection
15 ml polypropylene conical bottom tubes PROgene 1500
50 ml polypropylene conical bottom tubes PROgene 5000
TEC4 anaesthetic vaporizer Ohmeda 1160526 For mouse euthanasia
CO2 gas tank Praxair C799117902 For mouse euthanasia
O2 gas tank Praxair O254130501 For mouse euthanasia
Homemade mouse gas chamber For mouse euthanasia
40 µm Falcon cell strainer Corning Incorporated 352340
50-micron sample line filters BD Biosciences 649049
Vortex mixer Labnet international, inc. S0200 For cell fixation
Dynac centrifuge Clay Adams 101
Celltrics 50 µm filters Partec 04-004-2327
488 nm laser-euipped cell sorter BD Biosciences FACSAria III
Accudop Fluorescent Beads BD Biosciences 345249
Sorting Buffer: 1X PBS, 1mM EDTA pH 8.0, 25mM HEPES pH 7.0, 1%FBS FBS is heat-inactivated. Make fresh solution, 0.22 μm filtered and keep at 4°C.

References

  1. Sato, T., et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 471 (7339), 504-507 (2011).
  2. Sato, T., et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat. Commun. 2, 472 (2011).
  3. Sun, X., Kovacs, T., Hu, Y. -. J., Yang, W. -. X. The role of actin and myosin during spermatogenesis. Mol. Biol. Rep. 38 (6), 3993-4001 (2011).
  4. Cheng, C. Y., Mruk, D. D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825-874 (2002).
  5. Laiho, A., Kotaja, N., Gyenesei, A., Sironen, A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE. 8 (4), (2013).
  6. Leduc, F., Maquennehan, V., Nkoma, G. B., Boissonneault, G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol. Reprod. 78 (2), 324-332 (2008).
  7. Meistrich, M. L., Mohapatra, B., Shirley, C. R., Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 111 (8), 483-488 (2003).
  8. Grégoire, M. -. C., et al. Male-driven de novo mutations in haploid germ cells. Mol. Hum. Reprod. 19 (8), 495-499 (2013).
  9. Simard, O., et al. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum. Mutat. , (2014).
  10. Wykes, S. M., Krawetz, S. Separation of spermatogenic cells from adult transgenic mouse testes using unit-gravity sedimentation. Mol. Biotechnol. 25 (2), 131-138 (2003).
  11. Yoshida, S., et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development (Cambridge, England). 133 (8), 1495-1505 (2006).
  12. Moreno, R. D., Lizama, C., Urzúa, N., Vergara, S. P., Reyes, J. G. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res. 325 (3), 533-540 (2006).
  13. Meistrich, M. L., Trostle-Weige, P. K., Van Beek, M. E. Separation of specific stages of spermatids from vitamin A-synchronized rat testes for assessment of nucleoprotein changes during spermiogenesis. Biol. Reprod. 51 (2), 334-344 (1994).
  14. van Pelt, A. M., de Rooij, D. G. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol. Reprod. 43, 363-367 (1990).
  15. Getun, I. V., Torres, B., Bois, P. R. J. Flow cytometry purification of mouse meiotic cells. J. Vis. Exp. , (2011).
  16. Kovtun, I. V., McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27 (4), 407-411 (2001).
  17. Bastos, H., et al. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A. 65 (1), 40-49 (2005).
  18. Lassalle, B., Ziyyat, A., Testart, J., Finaz, C., Lefèvre, A. Flow cytometric method to isolate round spermatids from mouse testis. Hum. Reprod. 14 (2), 388-394 (1999).

Play Video

Cite This Article
Simard, O., Leduc, F., Acteau, G., Arguin, M., Grégoire, M., Brazeau, M., Marois, I., Richter, M. V., Boissonneault, G. Step-specific Sorting of Mouse Spermatids by Flow Cytometry. J. Vis. Exp. (106), e53379, doi:10.3791/53379 (2015).

View Video