Summary

人骨髓间充质干细胞(干细胞)的免疫调节性能评估

Published: December 24, 2015
doi:

Summary

人类骨髓间充质干细胞(MSC)的免疫调节属性显示越来越重要的临床应用。用MSC和外周血白细胞的共同培养系统的预染色的荧光染料羧基琥珀酰亚胺酯(CFSE),我们描述对效应白细胞增殖和特定亚群的体外评估的MSC免疫调节的。

Abstract

The immunomodulatory properties of multilineage human mesenchymal stem cells (MSCs) appear to be highly relevant for clinical use towards a wide-range of immune-related diseases. Mechanisms involved are increasingly being elucidated and in this article, we describe the basic experiment to assess MSC immunomodulation by assaying for suppression of effector leukocyte proliferation. Representing activation, leukocyte proliferation can be assessed by a number of techniques, and we describe in this protocol the use of the fluorescent cellular dye carboxyfluorescein succinimidyl ester (CFSE) to label leukocytes with subsequent flow cytometric analyses. This technique can not only assess proliferation without radioactivity, but also the number of cell divisions that have occurred as well as allowing for identification of the specific population of proliferating cells and intracellular cytokine/factor expression. Moreover, the assay can be tailored to evaluate specific populations of effector leukocytes by magnetic bead surface marker selection of single peripheral blood mononuclear cell populations prior to co-culture with MSCs. The flexibility of this co-culture assay is useful for investigating cellular interactions between MSCs and leukocytes.

Introduction

人间充质干细胞(MSCs)是体祖细胞可以分化成骨,软骨和脂肪组织1-4的近轴中胚层谱系,以及几extramesodermal谱系5。首先从成人骨髓中分离,这些多谱系祖细胞现已发现在多种组织和6-8,出乎意料的是,显示出具有出现高度适合于临床应用9-12强免疫调节性能。参与免疫调节作用的详细机制正在积极研究对特定病种有效的应用。其中一个最简单的方式来评估免疫调节是通过评估的效应白细胞增殖13的抑制。大多数效应白细胞,如T淋巴细胞和单核细胞增生不歇刺激或激活时。免疫调节功能,可以评估时抑制增殖证明。

传统上,效应白细胞增殖进行了评价通过检测 [3 H]胸苷掺入DNA中。然而,这种方法具有缺点显著由于辐射和后期使用处置的关注,以及所需要的复杂的设备。虽然有非放射性测定法来评估细胞增殖,所述羧基琥珀酰亚胺酯(CFSE)测定具有其它优点,如允许识别特定细胞群,这是在涉及多种细胞类型的共培养实验中特别有用的。 CFSE是荧光染料的细胞可以通过流式细胞术分析来评估。作为细胞分裂时,这种细胞标记的强度成比例地降低;这不仅使得能够确定的总的细胞增殖,但也允许对细胞分裂的高达8分割的数目评估前的荧光变得难以DET等针对背景信号。此外,该荧光CFSE的稳定性允许在体内跟踪,使得细胞可以可视化长达很多个月14标记的细胞。

该测定也可以改变,以评估特定类型的效应子白细胞或特定人群的免疫调节功能的MSC诱导的免疫调节白细胞,如白介素-10(IL-10)产生的CD14 +单核细胞 15通过执行的磁珠表面标记选择之前或共培养适当的利息后的细胞群。我们的协议描述评估对效应白细胞MSCs的免疫调节作用( 1中所示的流程图)的基本测定,并在此基础测定法对异源CD4 +效应 T淋巴细胞的MSC诱导的白细胞免疫调节评价的变型(图中所示的流程图图4中)。

Protocol

必须使用人体细胞获得批准的机构审查委员会患者的知情同意书。 人外周血单个核细胞1.密度梯度分离(外周血单个核细胞) 加25 ml的肝素化全血到50ml管由25毫升吸管。 稀释细胞用25ml磷酸盐缓冲盐水(PBS)的。 新增15 ml的菲可 – 帕克密度梯度到一个新的50ml管中,并在倾斜的管,非常缓慢并小心地在25毫升的稀释的细胞悬浮液在密度梯度的添加使得…

Representative Results

图1表示了实验的总体架构,而图2展示了可视化作为用相差倒置显微镜的各种细胞培养条件的外观。的MSC是贴壁细胞与成纤维细胞,纺锤形的形态,而PBMC和白细胞小圆非贴壁细胞。这两个形态不同的细胞类型,可以清楚地看出,在共培养。在测定结束时,当PBMC中(或leuckotyes)吸出流式细胞仪分析,即使粘附的MSCs无意中包含(即,由于附接不良或移位通过剧烈抽吸),应?…

Discussion

Increasingly, the immunomodulatory properties of MSCs are being translated into clinical use more rapidly than the multilineage capacity of these stem cells18-20. Thus, co-culture techniques of MSCs with leukocytes and assays to evaluate immune function are important to further delineate the specific mechanisms involved in these properties for optimizing effective therapeutic application.

One of the most critical technical aspects for success in these assays is having adequate PBMC…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by grants from NHRI (CS-104-PP-06 to B.L.Y.).

Materials

Ficoll-Paque PLUS GE Healthcare 71-7167-00 AG Density grandient for isolation of peripheral blood mononuclear cells (PBMCs)
Vibrant CFDA-SE Cell Tracer Kit (CFSE) Life Technologies V12883 Cellular label for detection of cell division
Phytoagglutinin (PHA) Sigma L8902 Activation of human PBMCs
Dynabeads Human T-Activator CD3/28 Life Technologies 111.32D Activation of human T lymphocytes, e.g. CD4+ T cells, CD8+ T cells,etc.
autoMACS™ Separator Miltenyi Biotec autoMACS™ Separator Magnetic based cell separator
autoMACS® Columns Miltenyi Biotec 130-021-101 separation columns
CD14 microbeads, human  Miltenyi Biotec 130-050-201 For positive selection of CD14+ human monocytes and macrophages from PBMCs
CD4 microbeads, human  Miltenyi Biotec 130-045-101 For positive selection of CD4+ human T lymphocytes from PBMCs
RPMI 1640 Medium Life Technologies 11875 Human PBMC/leukocyte culture medium
DMEM, Low glucose, pyruvate Life Technologies 11885 Human mesenchymal stem cell (MSC) culture medium
L-glutamine Life Technologies 25030-081 Supplementation for MSC complete medium
Penicillin/Streptomycin Life Technologies 15070-063 Supplementation for PBMC/leukocyte and MSC complete medium
Fetal bovine serum (FBS) 1) Hyclone, for MSC culture                   2) Life Technologies, for all other cells (i.e. PBMCs, specific leukocyte populations) 1) SH30070.03M 2) 10091-148 Pre-test lots for support of MSC in vitro culture
24-well cell culture plate Corning COR3524 Co-culture plate
50 mL centrifuge tube Corning 430291 Isolation PBMCs from whole blood by Ficoll-Paque PLUS
15 mL centrifuge tube  Corning 430766 Collection of the labeled and unlabeled cell fractions
Round-bottom tubes BD Falcon  352008 Collection of cells for flow cytometric analysis

References

  1. Friedenstein, A. J. Precursor cells of mechanocytes. Int Rev Cytol. 47, 327-359 (1976).
  2. Pittenger, M. F., et al. Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143-147 (1999).
  3. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 276, 71-74 (1997).
  4. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315-317 (2006).
  5. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  6. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228 (2001).
  7. Yen, B. L., et al. Isolation of multipotent cells from human term placenta. Stem Cells. 23, 3-9 (2005).
  8. Erices, A., Conget, P., Minguell, J. J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 109, 235-242 (2000).
  9. Bartholomew, A., et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 30, 42-48 (2002).
  10. Chang, C. J., et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 24, 2466-2477 (2006).
  11. Uccelli, A., Moretta, L., Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8, 726-736 (2008).
  12. Chen, P. M., Yen, M. L., Liu, K. J., Sytwu, H. K., Yen, B. L. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci. 18, 49-59 (2011).
  13. Muul, L. M., et al. Measurement of proliferative responses of cultured lymphocytes. Curr Protoc Immunol. , (2011).
  14. Quah, B. J., Warren, H. S., Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2, 2049-2056 (2007).
  15. Chen, P. M., et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol. 96, 295-303 (2014).
  16. Oughton, J. A., Kerkvliet, N. I., Costa, L. G., Davila, J. C., Lawrence, D. A., Reed, D. J., Will, Y. UNIT 18.8 Immune cell phenotyping using flow cytometry. Curr Protoc Toxicol. , 18.8.1-18.8.24 (2005).
  17. Phelan, M. C., Lawler, G., Robinson, J. P., et al. APPENDIX 3A Cell counting. Curr Protoc Cytom. , A.3A.1-A.3A.4 (2001).
  18. Gebler, A., Zabel, O., Seliger, B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 18, 128-134 (2012).
  19. Le Blanc, K., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 371, 1579-1586 (2008).
  20. Tan, J., et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 307, 1169-1177 (2012).
  21. Le Blanc, K., et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 57, 11-20 (2003).
  22. Li, X. Y., et al. Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells. Mol Med Rep. 6, 1183-1189 (2012).
  23. Moll, G., et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties?. Stem Cells. 32, 2430-2442 (2012).
  24. Ho, P. J., Yen, M. L., Tang, B. C., Chen, C. T., Yen, B. L. H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal. 18, 1895-1905 (2013).

Play Video

Cite This Article
Hsu, P., Liu, K., Chao, Y., Sytwu, H., Yen, B. L. Assessment of the Immunomodulatory Properties of Human Mesenchymal Stem Cells (MSCs). J. Vis. Exp. (106), e53265, doi:10.3791/53265 (2015).

View Video