Selective damage of human leukemia cells can be achieved through a novel approach of applying low frequency ultrasound both with and without chemotherapeutic pretreatment of leukemic and normal hematopoietic cells.
Low frequency ultrasound in the 20 to 60 kHz range is a novel physical modality by which to induce selective cell lysis and death in neoplastic cells. In addition, this method can be used in combination with specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells, an approach referred to as sonodynamic therapy (SDT). The methodology for generating and applying low frequency ultrasound in a preclinical in vitro setting is presented to demonstrate that reproducible cell destruction can be attained in order to examine and compare the effects of sonication on neoplastic and normal cells. This offers a means by which to reliably sonicate neoplastic cells at a level of consistency required for preclinical therapeutic assessment. In addition, the effects of cholesterol-depleting and cytoskeletal-directed agents on potentiating ultrasonic sensitivity in neoplastic cells are discussed in order to elaborate on mechanisms of action conducive to sonochemotherapeutic approaches.
Ultrasound refers to any oscillating sound pressure wave with a frequency greater than the upper limit of human auditory capacities (~ 20 kHz)1. Low frequency ultrasound in the 20-60 kHz range has been utilized in the laboratory as a means of generating emulsions, preparing cellular samples for nucleic acid extraction, for tissue disruption, and for a variety of other tests. The utility of low frequency ultrasound has also been extended to the industrial setting for welding, cleaning various materials, and in materials processing. Commercially available ultrasound generators come in frequencies ranging from 18-60 kHz, and full-scale wattages from 100-1,200 W.
Although ultrasound has long been used in the clinical setting for diagnostic imaging, it has been applied as a therapeutic modality only recently. Ultrasound ≥1 MHz is capable of safely disrupting urinary calculi (kidney stones) and biliary calculi (stones in the gallbladder or in the liver) in patients to reduce symptoms2,3. This approach known as extracorporeal shockwave lithotripsy (ESWL) is now widely applied in the clinic (more than one million patients are treated annually with ESWL in the United States alone4), and offers a modality by which to non-invasively break up calculi with minimal collateral damage through the use of externally applied, focused, high intensity acoustic pulses2-4.
Due to the unique direct shearing forces, as well as cavitation bubbles generated by high intensity ultrasound, these methodologies have been examined in cancer therapy for the treatment of castration-resistant prostate carcinoma and pancreatic adenocarcinoma in an approach known as high intensity focused ultrasound (HIFU)5-8. In a manner very similar to ESWL, HIFU uses multiple ultrasound beams and focuses them on a selected focal area to generate temperatures of 60 °C or higher through the use of acoustic energy, inducing coagulative necrosis in the targeted tissue5. Although other modalities of thermal ablation currently exist (radiofrequency ablation and microwave ablation), HIFU offers a distinct advantage over these methods in that it is the only non-invasive hyperthermic modality5. HIFU has attained mixed results in the clinic and is currently only available in clinical trials8-11. Nevertheless, the limited success it has achieved, and the very promising in vivo data acquired from preclinical mammalian models have demonstrated the potential of ultrasound in cancer therapy.
In an effort to improve HIFU, researchers have attempted to combine ultrasound with appropriate antineoplastic agents to generate a form of sonochemotherapy. Sonodynamic therapy (SDT) is a promising novel treatment modality that has demonstrated impressive antineoplastic activity in both in vitro and in vivo studies1. It has been shown that ultrasound preferentially damages malignant cells based on the size differential between such cells and those of normal histology1,5. SDT incorporates specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells. While therapeutic applications of SDT have been previously examined, ultrasonic systems used typically employ higher frequency ultrasound (≥1 MHz), and the effects of low kHz frequency ultrasound has yet to be fully explored. Lower frequencies of ultrasound are often more proficient at producing inertial cavitation, a phenomenon that results in the destruction of cells due to the rapid collapsing of microbubbles, inducing physicochemical damage12-14. This difference in the generation of inertial cavitation between MHz and low kHz ultrasound has been attributed to the fact that lower wave frequencies enable microbubbles more time to grow by rectified diffusion in the expansion half cycle, consequently producing more violent collapses during the following compression half cycle12.
We have previously shown that U937 human monocytic leukemia cells are sensitive to low frequency ultrasound (23.5 kHz), and that this sensitivity can be markedly increased through the application of antineoplastic agents that perturb the cytoskeleton15. Further, we have demonstrated that cells are preferentially damaged based on size, with larger cells exhibiting higher ultrasonic sensitivity. In addition, normal human hematopoietic stem cells (hHSCs) and leukocytes at comparable cell sizes are much more resistant to sonication than their neoplastic counterparts15, tentatively suggesting that low frequency ultrasound may be used to preferentially damage malignant cells in the presence of normal tissue.
To further examine the unique properties of low frequency ultrasound for potential therapeutic use, we have developed cleaning and stabilization procedures to increase the efficacy and reliability of one of our current sonication systems, the Branson Model SLPe 150 W, 40 kHz Cell Disrupter, equipped with a 20 mm horn fitted into a 7.62 cm cup. In addition, we have been able to determine accurate sample cavitation energies, as well as consistent waveforms and amplitude within the 40 kHz range using a cavitation meter and oscilloscope with hydrophone. By refining and systematizing our protocols, we have been able to establish consistency in our experimental sonications, allowing us to quantitatively compare the sonic sensitivities of neoplastic and normal cells of different histogenetic lineages. Our protocol for the 40 kHz system is presented in extensive detail in order for interested laboratories to be capable of performing comparable experiments, and to evaluate our findings of the antineoplastic effects elicited by low frequency ultrasound. In addition, we examine the dose dependent effects of methyl-β-cyclodextrin (MeβCD; Figure 1), a cholesterol-depleting agent, on increasing the ultrasonic sensitivity of U937 and THP1 human monocytic leukemia cells.
To attain optimal results, special care should be taken to carefully position the sample and clean the converter-horn union. The placement of the sample in the horn is important for obtaining consistent cell destruction, as changing the distance from the horn will alter the acoustic foci, and therefore alter the energy the sample is exposed to. The acoustic energy within the cup horn can be mapped using the cavitation meter to find the position of maximum cavitation. In addition, the cavitation meter, along with the oscilloscope are vital for determining the sound intensity the cells are being exposed to, as well as the homogeneity of the waveform. Therefore, these instruments should be used to detect problems with the system, and help determine what troubleshooting may be needed to correct system instability.
As previously mentioned, the low frequency system may act to further degas the water throughout the experiment if not run for several minutes prior to sample sonication. This initial run must be performed to yield a relatively degassed sonication medium and thus consistent results during experiments. In addition, cells should not be sonicated at or near the maximum amplitude when assessing the efficacy of sonosensitizers, as the true extent of sensitization would be difficult to assess. Using 33% amplitude on the 40 kHz system is an ideal setting, as it produces notable damage, but provides sonosensitizers ample room to demonstrate their efficacy, as demonstrated with MeβCD against U937 and THP1 cells (Figure 7). These data also confirm that MeβCD sensitizes multiple leukemia lines to low frequency ultrasound in a dose dependent manner.
There have been a number of experiments done with higher frequency in the range of 0.75 MHz to 8 MHz showing evidence of intramembrane cavitation bubbles being generated through sonication17-19. However, questions still remain in regards to the exact mechanism of ultrasound-induced cell lysis18. We have shown a link between fluidizing the cytoskeleton and increased sonic sensitivity using low frequency ultrasound15, a phenomenon demonstrated by other laboratories20, 21. In addition, we have found that microfilament-disrupting agents such as cytochalasin B potentiate ultrasonic sensitivity in multiple leukemia lines, but not hHSCs or leukocytes22, suggesting that inhibition of actin polymerization may be a sonosensitizing mechanism of particular interest. We have also observed that vincristine, a microtubule-disrupting agent that inhibits tubulin polymerization23, 24, markedly increases the ultrasonic sensitivity of different leukemia types in vitro including acute myeloid leukemia, chronic myeloid leukemia, and acute lymphoid leukemia. By contrast, cytoskeletal-directed agents that stabilize cytoskeletal components (paclitaxel and jasplakinolide) appear to make cells resistant to sonication, reflected by lower rates of cell lysis22. Taken together, these data support the hypothesis that fluidizing the cytoskeletal components of neoplastic cells is indeed an important factor in increasing the efficacy of SDT25. The present study also demonstrates that cholesterol depletion may be another method by which to further potentiate the ultrasonic sensitivity of neoplastic cells, as MeβCD-treated U937 cells are markedly sensitized to 40 kHz ultrasound.
While our sonication protocols have demonstrated marked antineoplastic activity in vitro, the current methodology is limited to work in culture and small vertebrate models that are able to fit in the vials used for sonication. We have shown that zebrafish can be safely sonicated using pulsed low frequency ultrasound (20 kHz), and that their tolerance to chemotherapeutic agents is quantitatively comparable to doses tolerated by murine models26, suggesting that tumor-bearing zebrafish may be used in preliminary investigations to assess the in vivo antineoplastic activity of these protocols. Nevertheless, administering chemotherapeutic agents prior to sonication of mammalian models has been reported in the MHz range1, and such protocols can likely be extended to incorporate low frequency ultrasound, as well as cholesterol-depleting and cytoskeletal-directed agents.
Potential clinical applications of this form of SDT may involve extracorporeal blood sonication in which antineoplastic agents are administered intravenously (i.v.) prior to the blood being removed for sonication25. This method removes potential sound barriers posed by human anatomy, and may be an effective way to damage leukemic blasts, as well as metastases from solid tumors. It is also possible that cholesterol-depleting and cytoskeletal-directed agents could be used in HIFU protocols that are already being examined in the clinic in an attempt to improve the efficacy of this treatment modality.
The methods described in the present study are capable of assessing the value of potential sonosensitizers, and further system refinement may enhance this utility. However, there are many variables to be considered when using such ultrasonic devises, including power supply quality, acoustic foci, and individual variation among converters. Therefore, future research will focus on visualizing the sonic waves and understanding their influence on results. SDT has shown to enhance cell lysis in vitro and may prove to be clinically viable if more in vivo data in mammalian models are acquired. Experiments examining other potentially exploitable characteristics of malignant cells, as well as various combined modalities involving multiple agents and ultrasound continue in our laboratory.
The authors have nothing to disclose.
The authors would like to thank the staff of the Syracuse University Department of Physics workshop for their innovative assistance in matters relating to our system design.
Iscove's Modified Dulbecco's Medium w/ NaHCO3 & 25mM Hepes | Life Technologies | 12440079 | |
Amphotericin B Solution | Sigma-Aldrich | A2942 | |
Penicillin/Streptomycin 100x Solution | Life Technologies | 10378-016 | |
Fetal Bovine Serum | Sigma-Aldrich | 12105 | |
Branson SLPe 40kHz Cell Disruptor with 3" (25mm) Cuphorn | Branson Ultrasonics | 101-063-726 | sonication device |
Brisk Heat SDC Benchtop Digital temperature Controler w/ 1000mL Beaker Heater | Brisk Heat | SDCJF1A-GBH1000-1 | heater used for temperature control |
Beckman-Coulter Z2 Cell Sizer with AccuComp® Software | Beckman-Coulter | 6605700 | |
Bio-Rad TC20 Automated Cell Counter | Bio-Rad | 145-0102 | |
Gentamicin 50mg/mL | Sigma-Aldrich | G1397 | |
Trypan Blue Solution | Sigma-Aldrich | T8154 | |
Falcon 50mL & 25mL Vented Culture Flasks | Fisher Scientific | 353082 | |
Lonza L-Glutamine 200mM 0.85% NaCl | Lonza | 17-605C | |
Seal-Rite 1.5 mL Microcentrifuge Tubes | USA Scientific | 1615-5510 | |
Beckman-Coulter Accuvette ST 25mL Vials and caps | Beckman-Coulter | A35473 | |
AccuJet Pro Auto Pipet | BrandTech Scientific | 26330 | |
USA Scientific 10mL Disposable Serological Pipets | USA Scientific | 1071-0810 | |
Tip One 100uL and 1000uL Filter Tips | USA Scientific | 1120-1840, 1126-7810 | |
100uL Micropipette | Wheaton | 851164 | |
1000uL Micropipette | Wheaton | 851168 | |
BioRad Dual Chamber Counting Slides | Bio-Rad | 145-0015 | |
Forma Scientific Dual chamber water jacketed Incubator | Forma Scientific | 3131 | |
Tektronix DPO 2002B Digital Phosphor Oscilloscope | Tektronix | DPO2002B | used to measure the ultrasonic waveform |
PPB MegaSonics Model PB-500 Ultrasonic Energy Meter | PPB Megasonics | PB-500 | used to assess the sound intensity in W/cm2 |
Teledyne RESON TC4013-1 Hydrophone | Teledyne | TC4013-1 | connects to the oscilloscope |
Wheaton 250mL Flasks | Sigma-Aldrich | Z364827 | |
20mL Glass Scintillation Vials | Sigma-Aldrich | Z190527 | |
Beckman-Coulter Isotonic Saline Solution | Beckman-Coulter | N/A | diluent for Z2 counter |
Chloroform 99% | Sigma-Aldrich | C2432 | |
Ethanol 200 Proof Anhydrous | Sigma-Aldrich | 459836 | |
Mineral Oil | N/A | ||
XTT Cell Proliferation Assay Kit | ATCC | 30-1011K | |
96-Well Microplate Reader | Cole-Palmer | EW-13055-54 | |
U937 Human Monocytic Leukemia Cells | ATCC | CRL1593.2 | |
THP1 Human Monocytic Leukemia Cells | ATCC | TIB-202 |