Insight into the complex actions of the brain requires advanced research tools. Here we demonstrate a novel silk-collagen-based 3D engineered model of neural tissue resembling brain-like architecture. The model can be used to study neuronal network assembly, axonal guidance, cell-cell interactions and electrical activity.
Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions.
O sistema nervoso central (SNC) pode ser afectada por uma variedade de desordens que envolvem vascular, estrutural, funcional, infecciosas ou degenerativas. Estima-se que 6,8 milhões de pessoas morrem a cada ano em conseqüência de distúrbios neurológicos, o que representa um fardo socioeconômico crescente em todo o mundo 1. No entanto, apenas algumas das desordens têm tratamentos disponíveis. Portanto, há uma necessidade crítica de estratégias terapêuticas inovadoras para pacientes que sofrem de distúrbios neurológicos. Infelizmente, muitas terapias CNS segmentados falhar durante os ensaios clínicos, em parte devido à utilização de modelos de investigação pré-clínica inadequados, que não permitem a avaliação dos impactos agudos e crônicos com leituras funcionais fisiologicamente relevantes.
Apesar dos esforços de investigação significativos nas últimas décadas, há uma vasta quantidade desconhecida sobre a estrutura e função do SNC. A fim de ganhar mais conhecimento, modelos animais são freqüentemente nósEd para modelar estados patológicos, tais como lesão cerebral traumática (TBI) ou demência, especialmente em estudos pré-clínicos. No entanto, os animais a partir de seres humanos diferem significativamente tanto na anatomia do sistema nervoso central, bem como em função, a expressão do gene e metabolismo 2-4. Por outro lado, in vitro, culturas 2D são o método mais comum para investigar a biologia celular e são rotineiramente utilizado para descoberta de drogas. No entanto, as culturas de células em 2D falta a complexidade e relevância fisiológica em comparação com cérebro humano 5-7. Enquanto não há substituto para o baixo custo e simplicidade de estudos de cultura de células em 2D ou a complexidade fornecida por modelos animais, a engenharia de tecidos 3D poderia gerar melhores modelos de pesquisa para fechar a lacuna que existe entre o 2D in vitro e in vivo abordagens. Engenharia de tecidos 3D fornece condições experimentais mais fisiologicamente relevantes obtidos por 3D interacções célula-célula e sinais extracelulares previstos pelos andaimes biomaterial. Despite a evidência significativa por trás do valor das culturas 3D, existem atualmente apenas alguns modelos de tecido do sistema nervoso central, tais como 3D-tronco derivadas de células culturas organ�de 8-10, neurospheroids 11 e disperso culturas hidrogel 12,13. Métodos de técnicas avançadas de multicamadas, incluindo a litografia 14, e impressão em 3D 15 foram utilizados para o estudo do pulmão, fígado, rim e tecido. No entanto, existe a falta de modelos 3D do SNC que permitam o crescimento neuronal compartimentada, como imitando a arquitetura cortical e biologia. Separado do crescimento de neurites a partir de corpos de células neuronais foi anteriormente demonstrada em culturas 2D utilizando microfabricação 16,17 permitindo que o estudo de rastreio tracto axónio, o influxo de cálcio, arquitetura de rede e actividades. Esta idéia nos inspirou a desenvolver um tecido neural polarizada 3D onde os corpos celulares e tratos axonais estão localizados em diferentes compartimentos imitando a arquitetura em camadas do cérebro 18 </sup>. A nossa abordagem é baseada no uso de design único andaime de seda que pode acomodar até alta densidade de células em um volume confinado e permite excrescência axonal de rede densa em um gel de colagénio. Aqui demonstramos o procedimento completo conjunto de tecido cerebral semelhante, incluindo a fabricação de andaime e cultura neuronal.
Here we described the guidelines to assemble a compartmentalized 3D brain-like tissue model. The model is characterized by dense polarized culture of neurons resulting in the development of two morphologically different compartments: one containing densely packed cell bodies, second containing pure axonal networks. Overall, the scaffold architecture and growth pattern mimic brain cortical tissue including the six laminar layers and white matter tracts21.
The donut-shaped silk protein-based tissue model allows for modifications and tuning of mechanical properties, versatile structural forms, hydrogel fillers and cellular components. Thus, this tissue model establishes a base platform for a wide range of studies. Silk is a favorable candidate for biomaterial platforms due to its biocompatibility, aqueous-based processing, and robust mechanical and degradation properties22. The silk matrix also serves as a stable anchor to reduce collagen gel contraction over time in culture. The properties such as silk concentration and porosity of the scaffold used in this model have been previously adjusted to achieve optimal cell growth and mechanical properties resulting in brain-like tissue elasticity18,23,24. We suggest to keep these parameters constant to ensure the successful outcome and reproducibility of the experiments.
The 3D neuronal network formation was achieved by combining two types of biomaterials with different mechanical properties: a stiff scaffold to provide neuronal anchoring and a softer gel matrix to permit axon penetration and connectivity in 3D. Selective material preferences of the silk scaffold and soft hydrogel provide the underlying principle for compartmentalizing the neurons from the axonal connections. Due to the inert nature of the silk scaffold, functionalization with poly-D-lysine is required for neuronal attachment. However, other cell adhesion promoting factors can be applied such as RGD25 or fibronectin26. To achieve the 3D network formation the silk scaffold needs to be filled with hydrogel in a timely manner as soon as neurons are attached to the scaffold. Likewise, the collagen matrix filler can be replaced by other hydrogels, thus allowing the study of the influence of 3D extracellular environments on axonal network formation to serve as a platform to evaluate novel hydrogels in terms of neuronal compatibility. Additionally, apart from rat cortical neurons other neuronal sources such as hippocampal neurons or induced pluripotent cell (iPSc)-derived neurons can be utilized. Moreover, the tissue model can be used to study heterocellular interactions by including glial cells along with neurons and to build more complex brain-like tissue.
As shown previously, our model can be utilized to evaluate neuronal functionality in 3D microenvironment with a variety of assays such as cell viability, gene expression, LC-MS/MS and electrophysiology, thus demonstrating physiological relevance of the model18. Other methods, which are frequently utilized to evaluate 3D tissue-engineered constructs, such as immunostaining and microscopy8,9,11 can also be used to assess cell distribution and extent of axonal network formation. However, it has to be noted, that due to the high density of the collagen matrix, the penetration of antibodies and depth of the imaging is limited to few hundred micrometers. Moreover, the signal to noise ratio may be affected by nonspecific background fluorescence. This can be overcome by using lipophilic cell tracers and genetically expressed fluorescent proteins which diminish the need for immunostaining11. Alternatively, the imaging can be performed with 2-photon microscopy instead of usual one-photon technique, which may reduce the signal loss, photobleaching, and can be extended to several hundred micrometers of depth.
Summarizing, the silk and collagen-based brain-like tissue offers a robust platform to study neuronal networks in 3D and is a starting point for the development of more advanced models of neurological disorders in the future. Independent from the mode of evaluation, the relative simplicity of this tissue model supports its utility, success and reproducibility.
The authors have nothing to disclose.
We thank the laboratory of Dr. Stephen Moss for providing embryonic rat brain tissues. M.D.T. designed the original protocol. This work was funded by National Institutes of Health P41 Tissue Engineering Resource Center Grant EB002520. K.C. was supported with Postdoctoral Fellowship from German Research Foundation (DFG) (CH 1400/2-1).
Na2CO3 | Sigma-Aldrich | 223530 | – |
LiBr | Sigma-Aldrich | 213225 | – |
MWCO 3500 dialysis cassettes | Thermo Fisher | 66110 | – |
Heating plate | Fisher Scientific | Isotemp | – |
Centrifuge 5804 R | Eppendorf | – | – |
Sieve | Fisher Scientific | – | No. 270, No. 35, No. 30 |
PTFE mold | – | – | made in house (Figure 1) 10 cm diameter, 2 cm height |
NaCl | Sigma-Aldrich | 71382 | – |
Biopsy Punch 5mm | World Precision Instrument | 501909 | – |
Biopsy Punch 2mm | World Precision Instrument | 501908 | – |
poly-D-lysine | Sigma-Aldrich | P6407-5MG | final concentration 10 ug/ml, dissolved in water |
PBS | Sigma-Aldrich | D1283-500ML | – |
Trypsin | Sigma-Aldrich | T4049-500ML | – |
DNase | Roche | 10104159001 | final concentration 0.3% |
Soybean protein | Sigma-Aldrich | T6522-100MG | final concentration 1 mg/ml |
Neurobasal medium | Gibco | 21103049 | warm up to 37°C before use |
B27 supplement 50x | Gibco | 17504-044 | – |
Glutamax | Gibco | 35050-061 | – |
Penicilin Streptomycin | Corning | 30-002-CI | – |
Collagen I, rat tail, 100 mg | Corning | 354236 | final concentration 3 mg/ml |
NaOH | Sigma-Aldrich | S2770 | corrosive |
Propidium Iodide | Sigma-Aldrich | P4170-10MG | toxic |
Fluorescein Diacetate | Sigma-Aldrich | F7378-5G | – |
Olympus MVX10 | Olympus | – | – |
Paraformaldehyde | Sigma-Aldrich | P6148 | toxic, final concentration 4% |
Bovine Serum Albumin | Sigma-Aldrich | A7906-10G | – |
anti-βIIITubulin antibody | Sigma-Aldrich | T2200 | rabbit 1:500 |
anti-rabbit Alexa-546 | Molecular Probes | A11010 | goat 1:250 |
goat serum | Sigma-Aldrich | G9023-5ML | – |
Leica SP2 confocal microscope | Leica | – | objective 20x |
QIAshredder | Qiagen | 79654 | – |
AllPrep DNA/RNA/Protein Mini Kit | Qiagen | 80004 | – |
Ethyl alcohol, Pure | Sigma-Aldrich | E7023 | – |
2-Mercaptoethanol | Sigma-Aldrich | 63689 | |
NanoDrop 2000c/2000 UV-Vis Spectrophotometer | Thermo Scientific | – | – |
BCA protein assay | Thermo Scientific | 23225 | – |
Plate reader Spectramax M2 | Molecular Devices | – | absorbance 562 nm |
Micro Scissors, Economy, Vannas-type | TedPella | 1346 | – |