Summary

Chemical Vapor Deposition di un magnete biologico, Vanadium Tetracyanoethylene

Published: July 03, 2015
doi:

Summary

Presentiamo la sintesi del ferrimagnete vanadio tetracyanoethylene base organica (V [TCNE] x, x ~ 2) mediante deposizione chimica in fase vapore a bassa temperatura (CVD). Questa ricetta ottimizzata produce un aumento della temperatura di Curie da 400 K a oltre 600 K e un notevole miglioramento in proprietà di risonanza magnetica.

Abstract

I recenti progressi nel campo dei materiali organici ha ceduto dispositivi quali diodi emettitori di luce organici (OLED) che presentano vantaggi non si trovano in materiali tradizionali, quali basso costo e flessibilità meccanica. In modo simile, sarebbe vantaggioso per espandere l'uso di sostanze organiche in elettronica ad alta frequenza e l'elettronica basata spin. Questo lavoro presenta un processo di sintesi per la crescita di film sottili di temperatura ambiente ferrimagnete organico, vanadio tetracyanoethylene (V [TCNE] x, x ~ 2) mediante deposizione chimica in fase vapore a bassa temperatura (CVD). Il film sottile è cresciuto a <60 ° C, e può ospitare una vasta gamma di substrati tra cui, ma non solo, il silicio, vetro, Teflon e substrati flessibili. La deposizione conforme è favorevole alla pre-modellato e strutture tridimensionali pure. Inoltre questa tecnica può produrre film con spessori da 30 nm a diversi micron. Progressi recentinell'ottimizzazione di crescita di film crea un film la cui qualità, quali una maggiore temperatura di Curie (600 K), una migliore omogeneità magnetico, e stretta larghezza di riga di risonanza ferromagnetica (1,5 G) mostrano promettenti per una varietà di applicazioni in spintronica e microonde elettronica.

Introduction

Il semiconduttore ferrimagnetic vanadio tetracyanoethylene base organica (V [TCNE] x, x ~ 2) presenta temperatura ambiente ordinamento magnetico e promette i vantaggi dei materiali organici per applicazioni magnetoelectronic, quali la flessibilità, la produzione a basso costo, e tunability chimica. Studi precedenti hanno dimostrato la funzionalità in dispositivi spintronic, incluse le valvole di spin organico / inorganico 1,2 e all-ibridi organici 3, e come un polarizzatore rotazione in un attivo organico / inorganico eterostruttura 4 semiconduttore. Inoltre, V [TCNE] x ~ 2 ha dimostrato promessa per l'inclusione in elettronica ad alta frequenza a causa della sua estrema stretta risonanza ferromagnetica linewidth 5.

Ci sono quattro diversi metodi che sono stati stabiliti per la sintesi di V [TCNE] x ~ 2 6-9. V [TCNE] x ~ 2 fu sintetizzato come powder in diclorometano via reazione di TCNE e V (C 6 H 6) 6. Queste polveri esposte primo ordine magnetico temperatura ambiente osservata in un materiale a base organica. Tuttavia, la polvere di questo materiale è estremamente sensibile all'aria, limitando la sua applicazione in dispositivi a film sottile. Nel 2000, una deposizione di vapore chimico metodo (CVD) è stato istituito per la creazione di V [TCNE] x ~ 2 film sottili 7. Più di recente la deposizione fisica di vapore (PVD) 8 e molecolare strato di deposizione (MLD) 9 sono stati utilizzati anche per fabbricare film sottili. Il metodo PVD richiede un sistema di ultra alto vuoto (UHV) ed entrambi PVD e metodi MLD richiede tempi estremamente lunghi di crescere film spessa di 100 nm, mentre le pellicole CVD possono facilmente essere depositati in spessori da 30 nm a diversi micron. Oltre alla varietà di spessori disponibili con il metodo CVD, ampi studi hanno prodotto film che mostrano costantemente alta q ottimizzatoualità proprietà magnetiche, tra cui: stretta risonanza ferromagnetico (FMR) linewidth (1,5 G), ad alta temperatura di Curie (600 K), e tagliente magnetico di commutazione 5.

Ordinamento magnetico in V [TCNE] x ~ 2 film sottili procede attraverso un percorso non convenzionale. Misurazioni magnetometria SQUID mostrano forte ordinazione magnetica locale, ma l'assenza di picchi di diffrazione di raggi X e featureless microscopia elettronica a trasmissione (TEM) 10 morfologia rivelano una mancanza di lungo raggio ordine strutturale. Tuttavia, l'assorbimento di raggi X esteso di struttura fine (EXAFS) studia 11 mostrano che ogni ione vanadio è octahedrally coordinata con sei differenti molecole TCNE, indicando un ordine strutturale locale, robusto, con una lunghezza di legame vanadio azoto 2.084 (5) Å. Magnetismo nasce da un accoppiamento scambio antiferromagnetico tra gli spin spaiati della TCNE anioni radicali, che sono distribuiti in tutto il TCNE molecola, e le rotazioni sui V 2+ ioni, portando ad un ordinamento ferromagnetico locale con T C ~ 600 K per i film ottimizzati 5. Oltre ad esporre temperatura ambiente ordinamento magnetico, V [TCNE] x ~ 2 film sono semiconduttore con 0,5 eV bandgap 12. Altre proprietà di nota sono possibili sperimagnetism sotto di una temperatura di congelamento ~ 150 K 13,14, anomalo magnetoresistenza positiva 12,15,16, e foto-indotta magnetismo 13,17,18.

Il metodo per la sintesi di CVD V [TCNE] x ~ 2 pellicole sottili è compatibile con una vasta gamma di substrati a causa della bassa temperatura (<60 ° C) e conforme deposizione. Studi precedenti hanno dimostrato con successo la deposizione di V [TCNE] x ~ 2 su supporti rigidi e flessibili 7. Inoltre, questa tecnica di deposizione si presta al tuning mediante una modifica di precursori e grparametri owth. 19-22 Mentre il protocollo indicato qui produce i film più ottimizzati fino ad oggi, sono stati compiuti progressi significativi nel migliorare alcune delle proprietà del film dopo la scoperta di questo metodo e ulteriori guadagni può essere possibile.

Protocol

1. Sintesi e preparazione di precursori Preparazione di [Et 4 N] [V (CO) 6] 23 In un vano portaoggetti di azoto, tagliata 1,88 g di sodio metallico in ~ 40 pezzi e mescolare con 14.84 g di antracene in 320 ml di tetraidrofurano anidro (THF) in 1 L di tre girocollo pallone a fondo. ATTENZIONE: Sia sodio metallico e tetraidrofurano sono altamente infiammabili. Agitare la soluzione per 4,5 ore a temperatura ambiente in atmosfera di azoto fino a quando un…

Representative Results

Il primo e il metodo più semplice per determinare se una deposizione ha successo è fare un controllo visivo dei film. Il film dovrebbe apparire viola scuro con finitura a specchio che è uniforme attraverso i substrati. Se ci sono macchie sulla superficie del substrato dove non c'è V [TCNE] x ~ 2 o è di colore più chiaro, allora questo è probabilmente dovuto alla presenza di solventi o altre impurità sulla superficie del substrato. Inoltre il film deve essere opaco. A meno che un film sott…

Discussion

I parametri fondamentali per V [TCNE] x ~ 2 deposizione comprendono temperatura, flusso di gas carrier, pressione, e il rapporto di precursori. Poiché la deposizione chimica da vapore set-up non è disponibile in commercio, tali parametri devono essere ottimizzati per ciascun sistema. Uno studio precedente Shima et al. Rivelato che la temperatura ha il maggiore impatto sul tasso sublimazione del TCNE precursore 26. La temperatura può essere modificata sia dal valore impostato su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato sostenuto da NSF Grant No DMR-1207243, il programma NSF MRSEC (DMR-0.820.414), DOE Grant No DE-FG02-03ER46054, e la OSU-Istituto per la ricerca sui materiali. Gli autori riconoscono il Laboratorio nanosistemi presso la Ohio State University, e l'assistenza tecnica da CY Kao e CY Chen.

Materials

Equipment
Nitrogen Glovebox Vacuum Atmospheres Omni steps done in nitrogen glovebox can also be done in an argon glovebox
1 L three-neck round bottom flask Corning 4965A-1L
500 mL round bottom flask Sigma Aldrich 64678
Turbo vacuum pumping station Agilent Varian G8701A-011-037
Glass Stopcock Kontes 185000-2440
Glass two way connecting tube Corning 8940-24 Corning Pyrex(R) 105 degree Angled Tube Adapter with Two-Way 24/40 Standard Taper Joint
Coldfinger Custom part made by OSU chemistry glass shop
Argon Glovebox Vacuum Atmospheres Nexus I
Hot plate stirrer Corning 6795
Thermoeletric cooler Advanced Thermoelectric TCP-50
Temperature controller Advanced Thermoelectric TLZ10 for TE cooler
Power supply Advanced Thermoelectric PS-145W-12V  for TE cooler and temperature controller
Temperature controller J-Kem  Scientific Model 150 For heating coil
Heating wire Pelican Wire Company Nichrome 60
Custom glassware pieces Made by OSU Chemistry glass shop
Vacuum pump BOC Edwards XDS-5 Connected to the CVD set-up
Flow meter Gilmont GF-2260
Micrometer valve Gilmont 7300 Controls flow of argon over TCNE
Micrometer valve Gilmont 7100 Controls flow of argon over  V(CO)6
Tubing Tygon R3603 1/8 in walls, connected between valves and meter
3-way Stopcock Nalgene 6470 used to adjust the flow rates
Pressure gauge Matheson 63-4105 connects to the top of Figure 1 part A
SQUID magnetometer Quantum Design MPMS-XL
EPR Bruker Elexsys
PPMS Quantum Design 14T PPMS
Sourcemeter Keithely  2400
Materials
Sodium metal Sigma Aldrich 262714
Anthracene Sigma Aldrich 141062
Anhydrous tetrahydrofuran Sigma Aldrich 186562
Vanadium(III) chloride tetrahydrofuran complex Sigma Aldrich 395382
Carbon monoxide gas OSU stores 98610
Tetraethylammonium bromide Sigma Aldrich 241059
Phosphoric acid Sigma Aldrich 79622
Methanol Sigma Aldrich 14262
Silcone oil Sigma Aldrich 146153
Copper pellets Cut from spare copper wire
Tetracyanoethylene Sigma Aldrich T8809
Glass slides Gold Seal 3010
Activated Charcoal Sigma Aldrich 242276

References

  1. Yoo, J. W., et al. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 9, 638-642 (2010).
  2. Li, B., et al. Room-temperature organic-based spin polarizer. Appl. Phys. Lett. 99, 153503 (2011).
  3. Li, B., Kao, C. Y., Yoo, J. W., Prigodin, V. N., Epstein, A. J. Magnetoresistance in an All-Organic-Based Spin Valve. Adv. Mater. 23, 3382-3386 (2011).
  4. Fang, L., et al. Electrical Spin Injection from an Organic-Based Ferrimagnet in a Hybrid Organic-Inorganic Heterostructure. Phys. Rev. Lett. 106, 156602 (2011).
  5. Yu, H., et al. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition. Appl. Phys. Lett. 105, 012407 (2014).
  6. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J., Miller, J. S. A Room-Temperature Molecular Organic Based Magnet. Science. 252, 1415-1417 (1991).
  7. Pokhodnya, K. I., Epstein, A. J., Miller, J. S. . Thin-film V TCNE (x) magnets. Adv. Mater. 12, 410-413 (2000).
  8. Carlegrim, E., Kanciurzewska, A., Nordblad, P., Fahlman, M. Air-stable organic-based semiconducting room temperature thin film magnet for spintronics applications. Appl. Phys. Lett. 92, 163308 (2008).
  9. Kao, C. Y., Yoo, J. W., Min, Y., Epstein, A. J. Molecular Layer Deposition of an Organic-Based Magnetic Semiconducting Laminate. ACS Appl. Mater. Interfaces. 4, 137-141 (2012).
  10. Miller, J. S. Oliver Kahn Lecture: Composition and structure of the V TCNE (x) (TCNE = tetracyanoethylene) room-temperature, organic-based magnet – A personal perspective. Polyhedron. 28, 1596-1605 (2009).
  11. Haskel, D., et al. Local structural order in the disordered vanadium tetracyanoethylene room-temperature molecule-based magnet. Phys. Rev. B. 70, 054422 (2004).
  12. Prigodin, V. N., Raju, N. P., Pokhodnya, K. I., Miller, J. S., Epstein, A. J. Spin-Driven Resistance in Organic-Based Magnetic Semiconductor V[TCNE]x. Adv. Mater. 14, 1230-1233 (2002).
  13. Yoo, J. W., Edelstein, R. S., Lincoln, D. M., Raju, N. P., Epstein, A. J. Photoinduced magnetism and random magnetic anisotropy in organic-based magnetic semiconductor V(TCNE)(x) films, for x similar to 2. Phys. Rev. Lett. 99 (15), 157205 (2007).
  14. Cimpoesu, F., Frecus, B., Oprea, C. I., Panait, P., Gîrţu, M. A. Disorder, exchange and magnetic anisotropy in the room-temperature molecular magnet V[TCNE]x – A theoretical study. Computational Materials Science. 91, 320-328 (2014).
  15. Raju, N. P., Prigodin, V. N., Pokhodnya, K. I., Miller, J. S., Epstein, A. J. High field linear magnetoresistance in fully spin-polarized high-temperature organic-based ferrimagnetic semiconductor V(TCNE)(x) films, x similar to 2. Synth. Met. 160, 307-310 (2010).
  16. Raju, N. P., et al. Anomalous magnetoresistance in high-temperature organic-based magnetic semiconducting V(TCNE)(x) films. J. Appl. Phys. 93, 6799-6801 (2003).
  17. Yoo, J. W., et al. Multiple photonic responses in films of organic-based magnetic semiconductor V(TCNE)(x), x similar to 2. Phys. Rev. Lett. 97, 247205 (2006).
  18. Yoo, J. W., Edelstein, R. S., Raju, N. P., Lincoln, D. M., Epstein, A. J. Novel mechanism of photoinduced magnetism in organic-based magnetic semiconductor V(TCNE)(x), x similar to 2. J. Appl. Phys. 103, 07B912 (2008).
  19. Caro, D., et al. CVD-grown thin films of molecule-based magnets. Chem. Mat. 12, 587-589 (2000).
  20. Erickson, P. K., Miller, J. S. Thin film Co TCNE (2) and VyCo1-y TCNE (2) magnetic materials. J. Magn. Magn. Mater. 324 (2), 2218-2223 (2012).
  21. Valade, L., et al. Thin films of molecular materials grown on silicon substrates by chemical vapor deposition and electrodeposition. J. Low Temp. Phys. 142, 393-396 (2006).
  22. Casellas, H., de Caro, D., Valade, L., Cassoux, P. A new chromium-based molecular magnet grown as a thin film by CVD. Chem. Vapor Depos. 8, 145-147 (2002).
  23. Barybin, M. V., Pomije, M. K., Ellis, J. E. Highly reduced organometallics – 42. A new method for the syntheses of V(CO)(6) (-) and V(PF3)(6) (-) involving anthracenide mediated reductions of VCl3(THF)(3). Inorg. Chim. Acta. 269, 58-62 (1998).
  24. Froning, I. H. M., Lu, Y., Epstein, A. J., Johnston-Halperin, E. Thin-film Encapsulation of the Air-Sensitive Organic Ferrimagnet Vanadium Tetracyanoethylene. Appl. Phys. Lett. 106, 122403 (2015).
  25. Pokhodnya, K. I., Bonner, M., Miller, J. S. Parylene protection coatings for thin film V TCNE (x) room temperature magnets. Chem. Mat. 16, 5114-5119 (2004).
  26. Shima Edelstein, R., Yoo, J. -. W., Raju, N. P., Bergeson, J. D., Pokhodnya, K. I., Miller, J. S., Epstein, A. J., Tessler, N., Arias, A. C., Burgi, L., Emerson, J. A. . Materials Research Society. , (2005).
  27. Katz, H. E. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics). Chem. Mat. 16, 4748-4756 (2004).
  28. Subbarao, S. P., Bahlke, M. E., Kymissis, I. Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices. IEEE Trans. Electron Devices. 57, 153-156 (2010).
  29. Lungenschmied, C., et al. Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells. 91, 379-384 (2007).
  30. Lu, Y., et al. Thin-Film Deposition of an Organic Magnet Based on Vanadium Methyl Tricyanoethylenecarboxylate. Adv. Mater. 26, 7632-7636 (2014).

Play Video

Cite This Article
Harberts, M., Lu, Y., Yu, H., Epstein, A. J., Johnston-Halperin, E. Chemical Vapor Deposition of an Organic Magnet, Vanadium Tetracyanoethylene. J. Vis. Exp. (101), e52891, doi:10.3791/52891 (2015).

View Video