Summary

Culturas organotípicos rebanada de Estudios de Postnatal neurogénesis

Published: March 04, 2015
doi:

Summary

Aquí se describe una técnica para el estudio de la neurogénesis postnatal del hipocampo mediante la técnica de cultivo de cortes organotípicos. Este método permite la manipulación in vitro de la neurogénesis adulta y permite la aplicación directa de agentes farmacológicos para el hipocampo cultivadas.

Abstract

Aquí se describe una técnica para el estudio de la neurogénesis postnatal del hipocampo en el cerebro de roedores mediante la técnica de cultivo de cortes organotípicos. Este método mantiene la morfología característica topográfica del hipocampo al tiempo que permite la aplicación directa de agentes farmacológicos a las desarrollo giro dentado del hipocampo. Además, los cultivos de cortes se pueden mantener durante un máximo de 4 semanas y por lo tanto, permiten a uno a estudiar el proceso de maduración de las neuronas granulares nacidos. Cultivos de cortes permiten la manipulación farmacológica eficaz de los cortes de hipocampo excluyendo variables complejas tales como las incertidumbres relacionadas con la localización anatómica profunda del hipocampo, así como la barrera hematoencefálica. Por estas razones, hemos tratado de optimizar cultivos de cortes organotípicos específicamente para la investigación neurogénesis postnatal.

Introduction

Adult neurogenesis in the mammalian hippocampus represents a remarkable example of the brain’s innate capacity for adaptability and plasticity. Dentate granule cells (DGCs) are generated from a renewable pool of neural progenitor cells in the hippocampal dentate gyrus, which is one of the two presently well-characterized neurogenic regions in the mammalian brain, and is thought to be particularly important for learning and memory. The hippocampus is part of the limbic system and has a deep location within the mammalian brain, which makes it a difficult target for precise pharmacological manipulation. Additionally, aberrant neurogenesis has been implicated in conditions, such as epilepsy, schizophrenia, and Alzheimer’s disease, which has prompted interest in understanding the influence of various pharmacological agents during the maturation and survival of newborn neurons. The distinction between postnatal and adult neurogenesis is blurred and previous studies have shown that many features of in vivo neuronal development in the early postnatal period and adulthood are similar25. Here we emphasize postnatal neurogenesis and suggest possible applications to adult neurogenesis.

Organotypic slice cultures provide an efficient in vitro method for studying various physiological properties of the mammalian hippocampus. The value of slice cultures prepared from rodent brains can be summarized in three main qualities: 1) the protocol is straightforward and requires readily available materials; 2) slice cultures allow for pharmacological studies that eliminate complex variables such as the deep anatomic location of the hippocampus and circumvents the blood brain barrier1; and 3) the well characterized structure of the hippocampus and tri-synaptic circuit is preserved2. Previous investigators have used the organotypic hippocampal culture to study synaptic development and physiology3,4, gliogenesis5-7, ischemic brain damage8,9, neuroprotection and neurorepair10-12 as well as epilepsy13-15.The slice cultures could also provide a useful model system allowing for the monitoring of cell development in conjunction with labeling of cells with green fluorescent protein (GFP) or other vital markers.

Slice cultures have also been previously employed to study postnatal hippocampal neurogenesis16-19, but one important factor in the majority of these studies is the well-characterized degeneration that results from explanting tissue from adult animals after approximately 2 weeks in vitro20,21. For this reason, slice cultures are typically prepared from early post-natal (P5-P10) mice or rat pups, which utilizes the improved viability of early postnatal brain tissue for culturing22. While previous studies have shown that the early postnatal and adult hippocampus differ with regards to synaptic physiology and the expression of specific neuronal subtypes23,24, there is substantial conservation of the choreographed developmental program that newborn dentate granule cells proceed through during maturation25. Additionally, recent studies have suggested that the physiological characteristics of newborn DGCs in culture are very similar to immature neurons in the acute hippocampal slice preparation16.

Protocol

NOTA: Todos los animales procedimientos se ajustaban a las normas de salud y bienestar de los animales del Departamento de Medicina Comparada en la Universidad de Toronto. 1. Preparación del hipocampo rebanadas Esterilizar los siguientes instrumentos utilizando el autoclave seco a 125 ° C: mango de bisturí (# 3) (2), fórceps patrón estándar, grande (1), pequeña tijera de disección (angulado a lado) (1), Micro cuchara (cuchara y plana extremos espátula) (1), Micro-espátul…

Representative Results

Determinar si los cultivos organotípicos serían adecuadas para la investigación neurogénesis adulta requiere que cumplan dos criterios principales: 1) que las rebanadas mantienen rasgos morfológicos característicos de rodajas de hipocampo después de 10 a 21 días in vitro (DIV), y 2) que los PED recién nacidos pueden ser cuantificados mediante técnicas de inmunohistoquímica convencionales empleados habitualmente en la investigación neurogénesis adulta. Con respecto al primer criterio, la Fig…

Discussion

Después de CldU (o BrdU) administración, la línea de tiempo de aplicación de agentes farmacológicos puede ser elegido para dirigir PED recién nacido durante particulares ventanas de desarrollo. Por ejemplo, un agente hipotético se puede aplicar durante la segunda semana post-inyección CldU, que se propone para coincidir con la edad de las neuronas inmaduras que se encuentran en una etapa de desarrollo en que se GABA despolarizante. Futuros estudios que utilizan este protocolo podrían adaptar el agente farmacol?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a research grant MOP 119271 to JMW by the Canadian Institute of Health Research. The authors would like to thank Ms. Yao Fang Tan for her outstanding technical assistance.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
5-chloro-2'-deoxyuridine (CldU) MP Biomedicals 105478 Hazardous, Carcinogenic
Cell culture inserts, 30mm diameter, 0.4µm pore size Thermo scientific  140660 Nuclon delta coating on these inserts provides better tissue adhesion and improves slice quality.
Conical Centrifuge tubes (sterile) Fisher Scientific 14-432-22
Dissector scissors (angled to side) Fine Science Tools  14082-09
Minimum essential medium (MEM) Gibco 11095; liquid Store at 4°C
Eclipse Ni-U fluorescent microscope Nikon
Glue for tissue Krazy Glue KG585 Use minimum amount of glue to achieve adhesion as any tissue exposed to glue will be unusable for IHC.
Hank’s Balanced Salt Solution (HBSS) (500 mL) Gibco 14025-092 Store at 4°C
Horse Serum Heat Inactivated (500 mL) Gibco 16050-122 Make 50 mL aliquots and store at -20°C
Kimwipes Kimberly-Clarke TW 31KYPBX
Modified glass pipettes (bottom of Pasteur pipette removed and edge smoothed with Bunsen flame)
Petri Dish (100mm x 15mm) and (60mm x 15mm) Fisher Brand FB0875712 and FB0875713A
Scalpel blades #11 Fine Science Tools 10011-00
Scalpel handle #3 Fine Science Tools 10003-12
Serological Pipettes Sorfa Medical Plastic Co. P8050
Standard Pattern forceps Fine Science Tools 11000-12
Sterile vacuum filter Thermo-Scientific 565-0020
Surgical Scissors Fine Science Tools 14054-13
Syringe driven filter unit Millipore-Millex SLGP033RS
Tissue chopper with moveable stage Stoelting  51425
Fine tip paintbrush

References

  1. Buchs, P. A., Stoppini, L., Muller, D. Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain research. Developmental Brain Research. 71 (1), 81-91 (1993).
  2. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods. 37 (2), 173-182 (1991).
  3. Opitz-Araya, X., Barria, A. Organotypic hippocampal slice cultures. Journal of Visualized Experiments. (48), (2011).
  4. Muller, D., Buchs, P. A., Stoppini, L. Time course of synaptic development in hippocampal organotypic cultures. Developmental Brain Research. 71 (1), 93-100 (1993).
  5. Rio, J. A., Heimrich, B., Soriano, E., Schwegler, H., Frotscher, M. Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus. Neuroscience. 43 (2-3), 335-347 (1991).
  6. Ziemka-Nalecz, M., Stanaszek, L., Zalewska, T. Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases. Acta Neurobiologiae Experimentalis. 73 (1), 130-142 (2013).
  7. Subramanian, L., et al. Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 108 (27), E265-E274 (2011).
  8. Strassburger, M., Braun, H., Reymann, K. G. Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. European Journal Of Pharmacology. 592 (1-3), 55-61 (2008).
  9. Sadgrove, M. P., Chad, J. E., Gray, W. P. Kainic acid induces rapid cell death followed by transiently reduced cell proliferation in the immature granule cell layer of rat organotypic hippocampal slice cultures. Brain Research. 1035 (2), 111-119 (2005).
  10. Wise-Faberowski, L., Robinson, P. N., Rich, S., Warner, D. S. Oxygen and glucose deprivation in an organotypic hippocampal slice model of the developing rat brain: the effects on N-methyl-D-aspartate subunit composition. Anesthesia and Analgesia. 109 (1), 205-210 (2009).
  11. Cho, S., Wood, A., Brain Bowlby, M. R. slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Current Neuropharmacology. 5 (1), 19-33 (2007).
  12. Noraberg, J., et al. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Current Drug Targets. CNS And Neurological Disorders. 4 (4), 435-452 (2005).
  13. Berdichevsky, Y., et al. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of post-traumatic epilepsy. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 33 (21), 9056-9067 (2013).
  14. Koyama, R., et al. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nature Medicine. 18 (8), 1271 (2012).
  15. Staley, K. J., White, A., Dudek, F. E. Interictal spikes: harbingers or causes of epilepsy. Neuroscience Letters. 497 (3), 247-250 (2011).
  16. Lee, H., Lee, D., Park, C. H., Ho, W. K., Lee, S. H. GABA mediates the network activity-dependent facilitation of axonal outgrowth from the newborn granule cells in the early postnatal rat hippocampus. The European Journal Of Neuroscience. 36 (6), 2743-2752 (2012).
  17. Raineteau, O., et al. Conditional labeling of newborn granule cells to visualize their integration into established circuits in hippocampal slice cultures. Molecular and Cellular Neurosciences. 32 (4), 344-355 (2006).
  18. Raineteau, O., Rietschin, L., Gradwohl, G., Guillemot, F., Gahwiler, B. H. Neurogenesis in hippocampal slice cultures. Molecular And Cellular Neurosciences. 26 (2), 241-250 (2004).
  19. Kamada, M., et al. Intrinsic and spontaneous neurogenesis in the postnatal slice culture of rat hippocampus. The European Journal Of Neuroscience. 20 (10), 2499-2508 (2004).
  20. Kim, H., Kim, E., Park, M., Lee, E., Namkoong, K. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 41, 36-43 (2013).
  21. Legradi, A., Varszegi, S., Szigeti, C., Gulya, K. Adult rat hippocampal slices as in vitro models for neurodegeneration: Studies on cell viability and apoptotic processes. Brain Research Bulletin. 84 (1), 39-44 (2011).
  22. Sadgrove, M. P., Laskowski, A., Gray, W. P. Examination of granule layer cell count, cell density, and single-pulse BrdU incorporation in rat organotypic hippocampal slice cultures with respect to culture medium, septotemporal position, and time in vitro. The Journal of Comparative Neurology. 497 (3), 397-415 (2006).
  23. Mielke, J. G., et al. Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development. Developmental Brain Research. 160 (2), 275-286 (2005).
  24. Fabian-Fine, R., Volknandt, W., Fine, A., Stewart, M. G. Age-dependent pre- and postsynaptic distribution of AMPA receptors at synapses in CA3 stratum radiatum of hippocampal slice cultures compared with intact brain. European Journal of Neuroscience. 12 (10), 3687-3700 (2000).
  25. Laplagne, D. A., et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biology. 4 (12), e409 (2006).
  26. McDonald, H. Y., Wojtowicz, J. M. Dynamics of neurogenesis in the dentate gyrus of adult rats. Neuroscience Letters. 385 (1), 70-75 (2005).
  27. Stone, S. S., et al. Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus. 21 (12), 1348-1362 (2011).
  28. Wang, S., Scott, B. W., Wojtowicz, J. M. Heterogenous properties of dentate granule neurons in the adult rat. Journal of Neurobiology. 42 (2), 248-257 (2000).
  29. Wojtowicz, J. M., Kee, N. BrdU assay for neurogenesis in rodents. Nature Protocols. 1 (3), 1399-1405 (2006).
  30. Fritsch, R. S. E. R., Weibel, E. R. Stereological Methods, Vol. 1: Practical Methods for Biological Morphometry. Zeitschrift für Allgemeine Mikrobiologie. 21 (8), 630-630 (1981).
  31. Bunk, E. C., Konig, H. G., Bonner, H. P., Kirby, B. P., Prehn, J. H. NMDA-induced injury of mouse organotypic hippocampal slice cultures triggers delayed neuroblast proliferation in the dentate gyrus: an in vitro model for the study of neural precursor cell proliferation. Brain Research. 1359, 22-32 (2010).
  32. Kolb, B., Pedersen, B., Ballermann, M., Gibb, R., Whishaw, I. Q. Embryonic and postnatal injections of bromodeoxyuridine produce age-dependent morphological and behavioral abnormalities. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 19 (6), 2337-2346 (1999).
  33. Morris, S. M. The genetic toxicology of 5-bromodeoxyuridine in mammalian cells. Mutation Research. 258 (2), 161-188 (1991).
  34. Bannigan, J., Langman, J. The cellular effect of 5-bromodeoxyuridine on the mammalian embryo. Journal Of Embryology And Experimental Morphology. 50, 123-135 (1979).
  35. Breunig, J. J., Arellano, J. I., Macklis, J. D., Rakic, P. Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell. 1 (6), 612-627 (2007).
  36. Duque, A., Rakic, P. Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 31 (42), 15205-15217 (2011).
  37. Namba, T., Mochizuki, H., Onodera, M., Namiki, H., Seki, T. Postnatal neurogenesis in hippocampal slice cultures: early in vitro labeling of neural precursor cells leads to efficient neuronal production. Journal of Neuroscience Research. 85 (8), 1704-1712 (2007).

Play Video

Cite This Article
Mosa, A. J., Wang, S., Tan, Y. F., Wojtowicz, J. M. Organotypic Slice Cultures for Studies of Postnatal Neurogenesis. J. Vis. Exp. (97), e52353, doi:10.3791/52353 (2015).

View Video