Body segmental inertial properties are required for inverse dynamics modeling. Using an oscillation and reaction board technique, inertial properties of below-knee prostheses were measured. Using direct measures of prosthesis inertia in the inverse dynamics model of the prosthetic leg resulted in lower magnitudes of resultant joint forces and moments.
Der Zweck dieser Studie war zweifach: 1) zeigen eine Technik, die verwendet werden kann, um direkt eine Schätzung der Trägheitseigenschaften einer Unterschenkelprothese, und 2) die Kontrasteffekte der vorgeschlagenen Technik und der Verwendung von intakten Extremität Trägheitseigenschaften gemeinsame kinetische Schätzungen während des Gehens in einseitigen, Unterschenkelamputierte. Eine Schwingungs und Reaktions Board-System wurde validiert und als zuverlässig erwiesen, wenn die Messung Trägheitseigenschaften von bekannten geometrischen Festkörper. Bei direkten Messungen der Trägheitseigenschaften der Prothese wurden in inverse Dynamik Modellierung der unteren Extremität verwendet, verglichen mit Trägheits Schätzungen auf der Grundlage einer intakten Schaft und Fuß, waren gemeinsame Kinetik an der Hüfte und Knie deutlich niedriger während der Schwungphase des Gehens. Unterschiede in der gemeinsamen Kinetik während der Standphase waren jedoch kleiner als die in der Schwung beobachtet. Daher sollten Forscher mit Schwerpunkt auf der Schwungphase des Gehens die Auswirkungen der prosthes betrachtenTrägheit ist Eigentum Schätzungen auf Studienergebnissen. Für Haltung, würde entweder eine der beiden Trägheits Modelle in unserer Studie untersucht, wahrscheinlich ähnliche Ergebnisse mit einer inversen Dynamik Beurteilung führen.
Die resultierende Gelenkkräfte und Momente bei der Bewegung zu quantifizieren, wird eine inverse Dynamikmodell des Systems von Interesse erforderlich, wenn mit empirischen Daten. Für untere Extremität Biomechanik, inverse Dynamikmodelle stellen in der Regel den Fuß, Schaft und Oberschenkel als starre Körper. Eingang für diese Modelle stammen aus drei Hauptquellen: a) Bewegungskinematik, b) Bodenreaktionskräfte, und c) Segment Anthropometrie und Trägheitseigenschaften. Bewegungsdaten mit einer Vielzahl von Bewegungsanalysesystemen gesammelt, aber alle Systeme im wesentlichen die Grund Kinematik der Bewegung (Position, Geschwindigkeit und Beschleunigung). Bodenreaktionskräfte sind mit einer Kraftmessplatte gesammelt und bieten die an den Füßen wirkenden Kontaktkräfte. Anthropometrie sind Messungen direkt aus dem Körper mit Herrschern, flexible Bänder und / oder Bremssättel gemacht. Die anthropometrischen Messungen verwendet werden, um die Trägheitseigenschaften der Körpersegmente im umgekehrten dynamisch verwendet schätzencs-Analysen. Trägheitseigenschaften umfassen die Masse, Schwerpunkt (COM) Lage und Trägheitsmoment (MOI) des Segments relativ zu einer Achse durch das Segment COM oder dem proximalen oder distalen Gelenk. Methoden und Geräte zum Sammeln Bewegung und Bodenreaktionskraft-Daten verwendet werden, sind ähnlich unter den Forschungsgruppen, aber Trägheits Schätzungen der Körpersegmente kann weit unter den Forschern je nachdem, welche Methode der Forscher wählt für die Schätzung dieser Trägheitseigenschaften variieren.
Verschiedene Techniken zur Schätzung der Trägheitseigenschaften eines voll intakten menschlichen Körpersegment verfügbar sind: 1) Regressionsgleichungen, basierend auf Daten kadaver 1-5, 2) mathematische Modelle (dh geometrische Modelle) 6,7, und 3) Scannen und Imaging-Techniken 15.08. Viele dieser Techniken erfordern die direkte Messung von dem Körper, aber es wurde zuvor gezeigt, dass unabhängig von der Schätzverfahren verwendet werden, die Genauigkeit der Körpersegmentement Trägheits Schätzungen auf der Grundlage dieser Methoden ist hoch 16. Es ist auch gezeigt worden, daß Fehler in den Schätzungen der Trägheitseigenschaften von intakten Körpersegmente haben minimale Auswirkungen auf die Größen der resultierenden gemeinsamen Momenten während des Gehens 17,18. Gemeinsame Momente werden in einem größeren Ausmaß von Bodenreaktionskräfte, Druckzentrum Standorten Moment Armlängen und Segment Kinematik 17-19 beeinflusst. Daher ist es nicht verwunderlich, dass Methoden zur Schätzung Trägheitseigenschaften von Körpersegmente bei der Verwendung von nicht behinderten Personen als Forschungsteilnehmer gegeben, dass kleine Fehler in den Schätzungen sind wahrscheinlich wenig Einfluss auf die Ergebnisse der Studie haben große Unterschiede in der Literatur.
Viele dieser Trägheits Schätzungen für eine völlig intakte Körpersegment sind oft für die Schätzung der Trägheitseigenschaften von Prothesen für die unteren Extremität Amputationen verwendet. Moderne Beinprothesen werden mit leichten Materialien hergestellt resulting in Prothesen, die viel leichter als die Glieder, die sie ersetzen sind. Dies führt zu einer Asymmetrie zwischen dem Trägheits Prothese und intakten Extremität. Verglichen mit einer typischen intakten Schaft und Fuß, der Masse eines Unterschenkelprothese und Restglied ist etwa 35% kleiner ist und eine Massenzentrum liegt etwa 35% näher zum Kniegelenk 20-23. Die geringere Masse und proximalen Massenverteilung der Prothese erzeugt auch eine viel geringere (~ 60%) Trägheitsmoment relativ zu dem Kniegelenk für die Prothese im Vergleich zu derjenigen der intakten Schaft und Fuß. Obwohl Forscher 24,25 vorher vorgeschlagen, dass unter Verwendung von intakten Trägheits Schätzungen für die Prothese haben wenig Einfluss auf gemeinsame kinetische Schätzungen, diese Vergleiche auf resultierende gemeinsame Momente während der Standphase des Gehens, wo dominiert die Bodenreaktionskraft den Zeitpunkt der erzeugte konzentriert Gelenk. Während Schaukel, wo Bodenreaktionskräfte nicht vorhanden sind, diereduzierte Trägheitseigenschaften der Prothese eher Schätzungen der resultierende gemeinsame Momente zu beeinflussen. Da einige Forscher zB, 26-32 nutzen intakten Segment Trägheitseigenschaften zu Prothese Trägheitseigenschaften darstellen und andere z. B. 21-23 Schätzung Prothese Trägheitseigenschaften direkt, es ist wichtig, die Auswirkungen der für die Schätzung der Trägheitseigenschaften der Prothese gewählten Methoden verstehen . Minimierung der Zeit für die Messung Trägheitseigenschaften der Prothese erforderlich war eine wichtige Überlegung bei der Entwicklung der Technik. In der hier vorgestellten Technik bleibt die Prothese vollständig erhalten für alle Messungen zu Messzeiten reduzieren und vermeiden zusätzliche Male mit der Neuausrichtung der Prothese nach der Messung verbunden.
So ist der Zweck dieser Studie war zweifach: 1) zeigen, eine Technik, um die Trägheitseigenschaften ab schätzen direkt verwendet werden könnenelow-Knieprothese, und 2) die Auswirkungen der Kontrast der vorgeschlagenen Technik und der Verwendung von intakten Gliedmaßen Trägheitseigenschaften gemeinsame kinetische Schätzungen während des Gehens in einseitigen, Unterschenkelamputierte. Es wurde vermutet, dass die gemeinsame kinetische Größen sind größer, wenn Trägheitseigenschaften des intakten Schaft und Fuß sind als die Trägheits Schätzungen für die Prothese im Vergleich zu direkten Messungen der Prothesenträgheitseigenschaften verwendet.
An oscillation and reaction board technique was presented for estimating the inertial properties of below-knee prostheses. This system was validated and shown to be reliable when estimating inertial properties of known geometrical solids (Appendix A). Prosthesis limb inertial properties for a group of unilateral, transtibial amputees were estimated in two ways: a) by direct measurement using oscillation and reaction board techniques, and b) using standard prediction equations created for intact limbs. The resulting inertial property estimates for the prosthetic limb were substantially different for two approaches. This difference in inertial properties resulted in significantly different estimates of joint kinetics during walking, with larger differences being observed during swing.
Although significant differences in joint kinetics occurred during stance using the two different inertial parameter estimations, these differences were small when considering the effects sizes for these differences and in comparison with differences observed during swing. In most studies of human movement, these statistically significant differences during stance may not have an impact on the outcomes in the study. Ground reaction forces have a large influence on overall moment magnitudes of lower extremity joints during the stance phase of walking.17-19 Even though there were significant differences in the inertial parameters for both models, these differences were not enough to overcome the importance of the ground reaction force contribution to the joint moment production during stance. Miller25 also previously suggested that the inertial properties of the prosthetic side had little effect on magnitudes of the lower extremity joint kinetics during the stance phase of running. However, Miller25 only took into account the differences in mass and center of mass location of the limb when altering the prosthetic limb’s inertial properties for the inverse dynamics model. Differences in moment of inertia were not accounted for in the model, but it was suggested that even if the moment of inertia was doubled or halved it would likely have little effect on the magnitude of the joint moment. The Iα term in the equation of motion accounted for less than 3% of the overall joint moment at any given point during the stance phase of running. In absolute terms, the largest change in moment magnitude for our study was observed in the hip joint moment at ~11% of the gait cycle where the average magnitude increase was ~2 N·m. This was approximately half of the magnitude increase that was observed by Miller25 during the stance phase of running. Our results combined with those of Miller suggest that direct measures of prosthesis inertia, including the moment of inertia, have only a small or negligible effect on the joint moment magnitudes of the hip and knee during the stance phase of walking or running.
With regard to the swing phase of walking, the choice of inertial model does have a significant impact on the magnitudes of lower extremity joint kinetics. During swing, there is no large external force, such as the ground reaction force during stance. The motion of the limb is much more dependent on the inertia in the system and the interactions among the segments. This was reflected by the large changes in joint kinetic magnitudes observed when the two different inertial models were used in the inverse dynamics analysis. Using regression equations based on intact anatomy to model the prosthetic limb during swing, suggested that a greater muscular effort was required than when actual measured inertial properties of the prosthesis were used.
The technique described in this paper to directly measure the inertial properties of a below-knee prosthesis has several limitations. We have described methods and made inertia property measurements of the legs only for sagittal plane analyses. Improvements to this system include creating an inner cage structure that could be suspended from three different axes so that all three principal moments of inertia could be measured. In addition, the reaction board technique could be used for all three planes to measure the three dimensional location of the prosthesis center of mass. Another improvement that could make the estimates of the residual limb mass slightly more accurate would be to use a volumetric assessment as described by Czerniecki and colleagues24 where the residual limb is suspended in a cylinder of water to estimate its volume while a uniform tissue density is applied to estimate the limb’s mass. Additionally, instead of using an assumed percentage to distribute the total prosthesis mass between the prosthetic socket and foot, each prosthesis could be disarticulated at the ankle so that each component could be weighed independently. Another limitation of our technique is that it does require some additional time during an experimental session. In general, using our technique to directly measure the prosthesis inertia will likely add 30 min to the total time needed for a data collection session.
Because of our small sample of below-knee prostheses with similar designs (i.e., lock and pin suspensions and dynamic elastic response prosthetic feet), developing definitive recommendations for estimating inertial properties of below knee prosthetic limbs as simple percentages of intact limb inertia properties is problematic. Nevertheless, combining our results with inertial estimates for below-knee prostheses from other studies20,21,23 and comparing these outcomes to inertia estimates for intact limbs, some consistent trends become apparent. Compared to the intact limb, the mass of the prosthetic side is consistently 30-40% less, the COM location is 25-35% closer to the knee joint, and the MOI is 50-60% less about a transverse axis through the knee joint.
In conclusion, using regression equations for an intact shank and foot to model the inertial properties of a below-knee prosthesis will impact the magnitudes of joint kinetic estimates during swing, but will have only a small or minimal impact on these magnitudes during stance. Thus, for researchers focusing only on the stance phase of locomotion using inertial properties of the intact limb to model the prosthetic side will not likely alter conclusions of the study. However, for those interested in swing phase kinetics, direct measures of the prosthesis inertial properties should be considered to avoid misrepresenting the true dynamics of prosthetic leg swing.
Appendix A
Reliability and Validity of Moment of Inertia and Center of Mass Estimations
To assess reliability and validity of our experimental measurements of prosthesis moment of inertia and center of mass location, two simple experiments were performed. In the first experiment, moments of inertia and center of mass locations of four objects were experimentally estimated in three separate trials. The four objects were: 1) 9 x 9 x 61 cm block of treated lumber (mass = 2.8 kg), 2) 9 x 9 x 64 cm block of untreated lumber (mass = 2.5 kg), 3) 7 x 9 x 65 cm block of untreated lumber (mass = 1.8 kg), and 4) 61 cm long piece of PVC pipe with and inside diameter of 8 cm and an outside diameter of 9 cm (mass = 0.8 kg). An oscillation technique12 was used to estimate each object’s moment of inertia about a transverse axis through its center mass. When an object oscillates about a fixed axis, the period of oscillation (τ) of the object is proportional to the object’s moment of inertia about that fixed axis. If the oscillation amplitude is less than 5° relative to a neutral position, the moment of inertia of the object can be estimated based on the motion of a simple pendulum:
(A.1)
where Iaxis is the moment of inertia relative to the oscillation axis, m is the mass of the system, g is the acceleration due to gravity, and d is the distance between the oscillation axis and the center of mass of the system.
A reaction board technique was used to estimate each object’s center of mass location. Static equilibrium was assumed (ΣMoments = 0) and the moments produced by the weight of the object, weight of the frame, and reaction force were summed about a fixed reference axis. The moment of inertia and center of mass location of each object were also estimated based on simple geometric equations. Our experimental measures were compared to these geometric estimations to assess validity. Reliability of our estimates for center of mass location and moment of inertia was assessed using two (one for COM estimation and one for MOI estimation), single factor general linear model ANOVAs, with 3 repeated measures reflecting the three trials. Intraclass correlation coefficients (ICCs) were also computed to determine the repeatability of our estimations.
In a second experiment, we assessed the reliability of our period of oscillation (τ) measurement. τ was measured for 10 consecutive trials with only the aluminum frame suspended from the oscillation axis and 10 consecutive trials with a wooden block (mass = 2.8 kg, dimensions = 9 x 9 x 61 cm) secured in the aluminum frame and both suspended from the oscillation axis. During each trial, τ was measured for 10 consecutive oscillations using a photocell whose output voltage varied based on the reflected light intensity. Reliability of our measurement for τ was assessed using four, single factor general linear model ANOVAs, with 10 repeated measures. Two (one for frame only trials and one for frame + block trials) ANOVAs were used to determine whether τ differed between consecutive oscillations (i.e., the data matrix was setup so that the factor was consecutive periods of oscillation within a given trial). Then the data matrices were rotated by 90° so that the factor was consecutive trials and two more ANOVAs were used to determine whether τ differed across consecutive trials. Intraclass correlation coefficients (ICCs) were also computed to determine the repeatability of our measurements.
Results of Experiment 1 – The Four Objects
Each object’s moment of inertia about a transverse axis through its center of mass (I_obj_cm) was consistently overestimated (by ~5% for wooden blocks and by ~12% for PVC pipe) compared to the estimations based on each object’s mass and geometry (Iz) (Table 3). Our estimations, however, were extremely reliable. There was no difference in the mean moment of inertia (F2,6 = 0.154; p = 0.861) for the four objects across the three trials. In addition, ICCs revealed that across trials our moment of inertia estimation was highly repeatable (ICC = 1.00). Thus, although our estimation tended to overestimate the object’s moment of inertia compared to the geometric estimate our estimations were reliable.
Our center of mass location estimation using a reaction board technique was consistent with estimations based on assuming uniform density and a geometric model. Differences were less than 1%. There was no difference in the mean center of mass location (F2,6 = 1.126; p = 0.384) for the four objects across the three trials. In addition, ICCs revealed that across trials our center of mass estimation was highly repeatable (ICC > 0.99). Thus, our center of mass estimations were valid and reliable.
Table 3. Our experimental estimations of moments of inertia and center of mass locations for the four objects compared to estimations based on the mass and geometry of each object. Click here to get an enlarged view of the table. Variable definitions: mframe = mass of the aluminum frame; mobject = mass of the object; t_frame = period of oscillation of the frame only; period of oscillation was determined as the mean of 10 consecutive oscillations and across three consecutive trials. t_object = period of oscillation of frame and object together; determined the same as t_frame; I_Frame_osc = I of the frame relative to the oscillation axis; I_Frame_obj_osc = I of the frame plus object relative to the oscillation axis; I_obj_osc = I of the object relative to the oscillation axis; I_obj_cm = I of the object about an axis through the object’s center of mass; Iz = Theoretical prediction of I about the object’s CM using the following geometric prediction equations:
PVC: ; where R was outer radius, r was inner radius, and h was length
Wood: ; where a is length and b is width
Geometric CM location was predicted as 50% of the object length.
Results of Experiment 2 – Period of Oscillation (τ) Assessment
When the aluminum frame alone was suspended from the oscillation axis and swung, τ consistently and systematically decreased (F9,81 = 123.25; p < 0.001) over the first 10 oscillations by approximately 6 msec in all 10 oscillation trials (Figure 5; left panel). Across trials, the mean period of oscillation was also found to differ significantly (F9,81 = 13.97; p < 0.001) when only the frame was oscillated. However, ICCs revealed that within a given trial the systematic decrease in τ over the first 10 oscillations was repeatable (ICC = 0.99). When the frame and wooden block (m = 2797 g) were swung together, τ did not change over the first 10 oscillations (F9,81 = 3.031; p = 0.116) and the mean τ across 10 consecutive trials did not significantly differ (F9,81 = 3.533; p = 0.093) (Figure 5; right panel). ICCs for the frame plus object trials suggest that within a given trial τ is not repeatable from oscillation to oscillation (ICC = 0.17). These data suggest that for the frame only trials τ is better estimated as a mean of the first oscillation across a series of trials and that when an object with characteristics similar to those of a below-knee prosthesis is oscillated, τ is better estimated as the mean across consecutive oscillations and across a number of trials.
Figure 5. Period of oscillation measured for (A) aluminum frame only and (B) frame and wooden block (block mass = 2.8 kg, block dimensions = 9 x 9 x 61 cm). Each panel shows 10 separate trials with the first 10 oscillations of each trial displayed. With only the frame suspended from the oscillation axis (left panel), τ systematically decreased over the first 10 oscillations. However, when a wooden block was added to the frame, τ did not systematically vary across the first 10 oscillations (right panel).
Sensitivity of Moment of Inertia to Period of Oscillation
Because results from experiment 1 suggest our estimations of an object’s moment of inertia are consistently overestimated and results from experiment 2 suggest that τ of the frame decreases over the first 10 oscillations, we performed a sensitivity analysis to determine the best method for quantifying τ for frame only trials and frame plus object trials (Table 4). τ is directly proportional to the moment of inertia of an object:
(A.2)
where Iaxis is the moment of inertia relative to the oscillation axis, m is the mass of the system, g is the acceleration due to gravity, and d is the distance between the oscillation axis and the center of mass of the system. Therefore, if τ decreases, then so does Iaxis because m, g, and d are constants within a given trial. Since we estimate the moment of inertia of an object as:
Iobj = Iobj+frame – Iframe (A.3)
underestimating the moment of inertia of the frame (Iframe) will produce a larger moment of inertia estimate for the object (Iobj), which is consistent with our estimations in experiment 1. Figure 6 displays τ from experiment 1 for both the frame only trials and frame plus object trials for the lightest object and heaviest object. This figure illustrates that for heavier objects (e.g., below knee prosthesis) there is no evident decrease in τ over the first 10 oscillations, but for lighter objects there is a slight systematic decrease in τ.
Table 4. Comparison of four different methods for determining period of oscillation. The object used in this analysis was the 9 x 9 x 61 cm block of treated lumber. Condition C produced the best estimate of the object’s moment of inertia when compared to an alternative theoretical estimation based on the object’s mass and geometry. Click here to get an enlarged view of the table. Notes: Variable definitions are the same as Table 3. Condition A: t_frame and t_object were computed as the mean period of oscillation of 10 consecutive oscillations across 3 trials. Condition B: t_frame and t_object were computed as the mean of the first period of oscillation across 3 separate trials. Condition C: t_frame was determined as in Condition B; t_object was determined as in Condition A. Condition D: t_frame was determined as in Condition A; t_object was determined as in Condition B.
Figure 6. Periods of oscillation for the heaviest and lightest objects. The left panels display the first 10 periods of oscillation of three trials for the frame only, and the right panels display the same for the frame plus object trials. As in experiment 2, there is a systematic decrease in τ over the first 10 oscillations when only the frame is oscillated. When the heavy object was oscillated (m = 2.797 kg), there was no systematic decrease in τ. However, a slight decrease in τ was observed when the light object (m = 0.716 kg) was oscillated. Typical below-knee prosthesis mass has been reported to range from 1.2 to 2.1 kg20,21. Thus, even for the lightest weight prostheses, τ should not exhibit a substantial decrease over the first 10 oscillations.
Conclusion
When the aluminum frame alone is oscillated, the period of oscillation will be determined as the mean of the first oscillation from 10 oscillation trials. When the aluminum frame and prosthesis are oscillated, the period of oscillation will be determined as the mean of 30 oscillations (3 trials, 10 consecutive oscillations within each trial).
The authors have nothing to disclose.
Funding from the American and International Societies of Biomechanics was provided for this study.
Oscillation Rack & Reaction Board | Custom Built | Outer cage made from 80/20 aluminum, inner cage from various thicknesses of solid of aluminum. | |
Laboratory scale | |||
NI LabView | National Instruments | Software for recording TTL pulses from infrared photocell. | |
BNC-1050 | National Instruments | BNC Breakout box with direct pin connections to the data acquisition card | |
MATLAB | Mathworks Inc. | Software for processing oscillation and reaction board data to predict inertial properties of prosthesis. |