LIBS-Detection-Funktionen auf die Bodensimulatoren wurden mit einer Reihe von Pulsenergien und Timing-Parameter getestet. Eichkurven wurden verwendet, um Nachweisgrenzen und Empfindlichkeiten für verschiedene Parameter zu bestimmen. Im allgemeinen zeigten die Ergebnisse, dass es keine signifikante Verminderung der Erkennungsfunktionen mit niedrigeren Pulsenergien und nicht-torgeErkennung.
Die Abhängigkeit von einigen LIBS Erkennungsfunktionen auf niedriger Pulsenergien (<100 mJ) und Timing-Parameter wurden mit synthetischen Silikat-Proben untersucht. Diese Proben wurden als Simulanten für Boden verwendet und enthalten kleinere und Spurenelemente häufig im Boden in einem breiten Bereich von Konzentrationen gefunden. Für diese Studie wurden 100 Eichkurven mit unterschiedlichen Pulsenergien und Zeitparametern hergestellt; Nachweisgrenzen und Empfindlichkeiten wurden aus den Eichkurven bestimmt. Plasma-Temperaturen wurden auch mit Boltzmann-Grundstücke für die verschiedenen Energien und der getesteten Timing-Parameter gemessen. Die Elektronendichte des Plasmas wurde mit der Vollbreiten-Halbmaximum (FWHM) der Wasserstoffleitung zu 656,5 nm über den getesteten Energien berechnet. Insgesamt zeigen die Ergebnisse, dass die Verwendung von niedrigeren Pulsenergien und Nichtgesteuerte Ermittlung nicht ernsthaft beeinträchtigen die analytischen Ergebnisse. Diese Ergebnisse sind sehr wichtig für die Gestaltung von Feldund Person LIBS-portable Instrumente.
Laser-Emissionsspektrometrie (LIBS) ist eine einfache Methode der Elementaranalyse, die einen Laser erzeugten Funken als Anregungsquelle verwendet. Der Laserimpuls wird auf einer Oberfläche, die erwärmt abträgt, zerstäubt und ionisiert das Oberflächenmaterial, die zur Bildung von Plasma fokussiert. Die Plasma-Licht wird spektral aufgelöst und erkannt und Elemente werden durch ihre spektralen Signaturen identifiziert. Wenn richtig kalibriert, kann LIBS quantitative Ergebnisse zu liefern. LIBS können Feststoffe, Gase und Flüssigkeiten mit geringer oder ohne Probenpräparation zu analysieren. 1 Diese Eigenschaften machen sie ideal für Analysen, die nicht im Labor durchgeführt werden können.
Derzeit ist LIBS wird für viele verschiedene Anwendungen, insbesondere solche, die Feld-basierte Messungen zur Quantifizierung erfordern sucht. 1-8 Dies erfordert die Entwicklung von LIBS-Analysegeräte mit robuste und kompakte Bauteile, die sich für ein Feld-basierten System. In den meisten Fällen wird diese Komponenten werden nicht die vollen Fähigkeiten von Labor-basierte Instrumente, wodurch die Analyse Performance zu beeinträchtigen. LIBS Ergebnisse sind abhängig von Laserpulsparameter und andere Messbedingungen, die Stichprobengeometrie umgebenden Atmosphäre, und die Verwendung von gated oder nicht-gated Erkennung enthalten. 9-12 Für Feld LIBS-basierte Mess-, zwei wichtige Faktoren zu berücksichtigen sind die Pulsenergie und die Verwendung des torge versus nicht-gesteuerte Erkennung. Diese zwei Faktoren bestimmen zu einem großen Teil der Kosten, der Größe und Komplexität der LIBS Instrument. Klein, robust gebaut Laser, die Impulse 10-50 mJ bei Wiederholungsraten von 0,3 bis 10 Hz erzeugen können, sind im Handel erhältlich und kann es sehr vorteilhaft sein. Daher ist es wichtig zu wissen, was, wenn überhaupt, Verlust der Erkennungsfunktionen aus der Verwendung dieser Laser führen. Die Pulsenergie ist ein wichtiger Parameter für LIBS, da sie die Menge an Material abgetragen wird und verdampft und das Anregungs char bestimmtschaften des Plasmas. Darüber hinaus kann die Verwendung von Gesteuerte Ermittlung der Kosten der LIBS-System zu erhöhen, als Ergebnis, ist es unbedingt erforderlich, die Unterschiede zwischen den Spektren und Erkennungsfunktionen zu bestimmen, mit gated und nicht-torgeErkennung.
Kürzlich wurde eine Studie durchgeführt, um einen Vergleich gated Detektion nicht-torgeErkennung für Spurenelemente in Stahl gefunden. Die Ergebnisse zeigten, dass die Nachweisgrenzen waren vergleichbar, wenn nicht besser für nicht-gesteuerten Erfassungs. 12. Ein wichtiges Merkmal ist, dass die LIBS Technik erfährt physikalischen und chemischen Matrixeffekte. Ein Beispiel des ersteren ist, dass die Laserpuls Paare effizienter mit leitenden / Metallflächen als nicht-leitenden Oberflächen. 13 Für diese Studie die Auswirkungen von Impulsenergie und Zeitparameter für die nichtleitenden Materialien wie Erde Simulanzlösemitteln wollten wir.
Zwar haben Feld tragbare LIBS Instrumente entwickelt und eingesetztFür einige Anwendungen ist eine umfassende Studie über die Erkennungsfunktionen nicht durchgeführt Vergleich höheren Energie-und Wohnanlagen zu geringeren Energie-und Nicht-Wohnanlagen mit Boden Simulanten. Diese Studie konzentriert sich auf die Laserpulsenergie und Timing-Parameter für die Bestimmung von Spurenelementen in komplexen Matrices. Die Laserimpulsenergie betrug 10 bis 100 mJ, um einen Vergleich zwischen der unteren und höheren Energien zu erhalten. Ein Vergleich der Verwendung von gated versus nicht-gesteuerten Detektion auch über den gleichen Energiebereich durchgeführt.
Beim Vergleich von nicht-torge und gated Detektionsmethoden, die Nachweisgrenze Daten zeigen, dass das gesteuerte Erfassungsmodus für den Nachweis von allen Elementen einschließlich derer, die nicht mit höheren Laserenergien in nicht-gesteuerten Erfassungsmodus erkennen ließ. Verwendung Gesteuerte Ermittlung wird der Anfangs hohen Hintergrund von der Ausbildung des Plasmas nicht beobachtet und der Hintergrund verringert, welches die Elementaremissions besser aufgelöst. Darüber hinaus waren die Nachweisgrenzen etwa…
The authors have nothing to disclose.
Diese Arbeit wurde durch die US-Energieministerium, Amt für Wissenschaft finanziert.
Equipment | |||
Nd:YAG laser | Continuum | Surelite II | |
Echelle spectrograh/ICCD | Catalina/Andor | SE200/iStar | |
Digital delay generator | BNC | Model 575-4C | |
Hydraulic Press | Carver | Model-C | |
31-mm pellet die | Carver | 3902 | |
Power meter indictor model | Scientech, Inc. | Model number: AI310D | |
Power meter detector model | Scientech, Inc. | Model number: AC2501S | |
Oscilloscope | Tektronix | MSO 4054 | |
Optical fiber | Ocean Optics | QP1000-2-UV-VIS | |
Lens kit (this kit contains the 75 mm f.l. lens) | CVI Optics | LK-24-C-1064 | |
Reagent/Material list | |||
Synthetic silicate sample | Brammer Standard Company | GBW 07704 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07705 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07706 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07708 | |
Synthetic silicate sample | Brammer Standard Company | GBW 07709 | |
Aluminum caps (for pressing synthetic silicate samples) | SCP Science | 040-080-001 |