Summary

مصقول وعززت ضعيفة، جمجمة نافذة على المدى الطويل التصوير من مخ الفأر

Published: March 07, 2012
doi:

Summary

نقدم وسيلة لتشكيل نافذة التصوير في جمجمة الفأر الذي يمتد ملليمتر وغير مستقرة لشهور دون التهاب في الدماغ. هي مناسبة تماما هذه الطريقة لدراسات طولية من تدفق الدم، وديناميات الخلوية، وخلية / بنية الأوعية الدموية باستخدام ثنائي الفوتون المجهري.

Abstract

في الجسم الحي التصوير من وظيفة القشرية يتطلب الوصول البصري إلى الدماغ دون انقطاع للبيئة داخل الجمجمة. نقدم وسيلة لتشكيل الجمجمة مصقول وعززت ضعيفة (منافذ) نافذة في جمجمة الفأر الذي يمتد على عدة ملليمترات في القطر وغير مستقر لعدة أشهر. وضعفت الجمجمة من 10 الى 15 ميكرون في سمك مع اليد التي عقدت التدريبات لتحقيق وضوح بصري، ومن ثم مضافين مع الغراء cyanoacrylate وغطاء زجاجي على: 1) توفير صلابة، 2) منع إعادة نمو العظام و3) الحد من تشتت الضوء من المخالفات الموجودة على سطح العظم. منذ الجمجمة لم يتم اختراق، وتقلص إلى حد كبير أي التهاب يمكن أن تؤثر على عملية التي تجري دراستها. لا يمكن أن يتحقق أعماق التصوير لمدة تصل إلى 250 ميكرون تحت سطح القشرة باستخدام ثنائي الفوتون المجهري المسح الضوئي ليزر. هي مناسبة تماما هذه النافذة لدراسة الدماغ تدفق الدم ووظيفة الخلوية على حد سواء في الأعمال التحضيرية تخدير ومستيقظا. فإنه يوفر المزيد من البروتوكول الاختياريportunity للتلاعب نشاط الخلية باستخدام optogenetics أو لعرقلة تدفق الدم في الأوعية التي تستهدفها تشعيع تعميم الضيائية.

Protocol

1. التحضير لجراحة ط تنظيف الأدوات الجراحية بواسطة sonicating في خليط من الحليب Maxizyme والجراحي في نظافة بالموجات فوق الصوتية. الأوتوكلاف الأدوات الجراحية قبل كل تجربة. ضمان أن تكون جميع الكو?…

Discussion

ثنائي الفوتون التصوير من خلال نافذة الموانئ يتطلب انتقال العدوى عن طريق العظام ضعيفة ودورا، والذي خفف من ضوء الليزر، ويضيف الانحرافات البصرية في أعماق أكبر 8. لكن، على الرغم من هذا العائق، لا يمكن تحقيق أعماق التصوير يصل إلى 250 ميكرون تحت سطح حنوني مع الإثارة نا…

Disclosures

The authors have nothing to disclose.

Acknowledgements

وأيد هذا العمل من قبل جمعية القلب الاميركية (في مرحلة ما بعد الدكتوراه زمالة إلى AYS)، والمعاهد الوطنية للصحة (MH085499، EB003832، وOD006831 إلى DK). نشكر بيت فريدمان وبليندر بابلو للتعليق على المخطوطة.

Materials

Agent Route of delivery Dose for mouse Duration Notes Source Ref Ref
Pentobarbital (Nembutal) IP 90 μg/g 15-60 min Narrow safety margin. Work up to proper dose of anesthesia slowly. Supplement 10 % of induction dose as required. 036093; Butler Schein 7
Ketamine (Ketaset) mixed with Xylazine (Anased) IP 60 μg/g (K)
10 μg/g (X) (mix in same syringe)
20-30 min Xylazine is co-injected as a muscle relaxant and analgesic. Supplement only Ketamine at 50% of induction dose as required. (K) 010177, (X) 033198; Butler Schein 7
Isoflurane (Isothesia) Inhalation 4% mean alveolar concentration (MAC) for induction; 1-2% MAC for maintenance 4-6 h. Provided in mixture of 70% oxygen and 30% nitrous oxide. Prolonged anesthesia leads to slow recovery. 029403; Butler Schein 26

Table 1. Suggested anesthetic agents for survival studies.

ITEM COMPANY CATALOG # / MODEL
Betadine Butler Schein 6906950
Buprenorphine (Buprenex) Butler Schein 031919
Fluorescein isothiocyanate dextran, 2 MDa molecular weight Sigma FD2000S
Isopropyl alcohol Fisher AC42383-0010
Lactated Ringer’s Solution Butler Schein 009846;
Lidocaine solution, 2 % (v/v) Butler Schein 002468
Saline Butler Schein 009861
Surgical Milk Butler Schein 014325
Texas Red dextran, 70 kDa molecular weight Invitrogen D1864
Maxizyme Butler Schein 035646
DISPOSABLES
Carbide burrs, 1/2 mm tip size Fine Science Tools 19007-05
Cottoned tip applicators Fisher Scientific 23-400-100
Cover Glass, no. 0 thickness Thomas Scientific 6661B40
Cyanoacrylate glue ND Industries 31428 H04308
Gas duster Newegg N82E16848043429
Grip cement powder Dentsply 675571
Grip cement solvent Dentsply 675572
Insulin syringe, 0.3 mL volume with 29.5 gauge needle Butler Schein 018384
Nut and bolt to secure the head Digikey Nut, H723-ND; bolt, R2-56X1/4-ND
Opthalmic ointment Butler Schein 039886
Scalpel blades Fisher Scientific 12-460-448
Screws, self-tapping #000 J.I. Morris Company FF000CE125
Silicone aquarium sealant Perfecto Manufacturing 31001
Tin oxide powder Mama’s Minerals EQT-TINOX
EQUIPMENT
Glass scribe Fisher Scientific 08-675
Dissecting microscope Carl Zeiss OPMI-1 FC
Electric powered drill Foredom or Osada K.1020 (Foredom) or EXL-M40 (Osada)
Electrical razor Wahl Series 8900
Forceps, Dumont no. 55 Fine Science Tools 11255-20
Feedback regulated heat pad FHC 40-90-8 (rectal thermistor, 40-90-5D-02; heat pad, 40-90-2-07)
Isoflurane vaporizer Ohmeda IsoTec4
Pulse oximeter Starr Life Sciences MouseOx
Screwdriver, miniature Garret Wade 26B09.01
Stereotaxic frame Kopf Instruments Model 900 (with mouse anesthesia mask and non-rupture ear bars)
Surgical scissors, blunt end Fine Science Tools 14078-10
Ultrasonic cleaner Fisher Scientific 15-335-30

Table 2. List of specific reagents, disposables and equipment.

References

  1. Cetin, A. Stereotaxic gene delivery in the rodent brain. Nature Protocols. 1, 3166-3173 (2006).
  2. Kleinfeld, D., Delaney, K. R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage sensitive dyes. Journal of Comparative Neurology. 375, 89-108 (1996).
  3. Driscoll, J. D., Yuste, R. Quantitative two-photon imaging of blood flow in cortex. Imaging in Neuroscience and Development. , 927-937 (2011).
  4. Drew, P. J., Shih, A. Y., Kleinfeld, D. Fluctuating and sensory-induced vasodynamics in rodent cortex extends arteriole capacity. Proceedings of the National Academy of Sciences U.S.A. 108, 8473-8473 (2011).
  5. Mostany, R., Portera-Cailliau, C. A Method for 2-Photon Imaging of Blood Flow in the Neocortex through a Cranial Window. J. Vis. Exp. (12), e678-e678 (2008).
  6. Zhang, S. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. Journal of Neuroscience. 25, 5333-5338 (2005).
  7. Takano, T. Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience. 9, 260-267 (2006).
  8. Drew, P. J. Chronic optical access through a polished and reinforced thinned skull. Nature Methods. 7, 981-984 (2010).
  9. Marker, D. F. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. Journal of Visualized Experiments. (43), e2059-e2059 (2010).
  10. Feng, G. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  11. Martin, C. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage. 32, 33-48 (2006).
  12. Shih, A. Y. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism. , (2011).
  13. Kobat, D. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express. 17, 13354-13364 (2009).
  14. Holtmaat, A. high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols. 4, 1128-1144 (2009).
  15. Xu, H. T. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neuroscience. 10, 549-551 (2007).
  16. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  17. Davalos, D. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 8, 752-758 (2005).
  18. Ascenzi, A., Fabry, C. Technique for dissection and measurement of refractive index of osteons. The Journal of Biophysical and Biochemical Cytology. 6, 139-142 (1959).
  19. Stosiek, C. In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences U.S.A. 100, 7319-7324 (2003).
  20. Grinvald, A. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 324, 361-364 (1986).
  21. Dunn, A. K. Dynamic imaging of cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow & Metabolism. 21, 195-201 (2001).
  22. Villringer, A. Capillary perfusion of the rat brain cortex: An in vivo confocal microscopy study. Circulation Research. 75, 55-62 (1994).
  23. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  24. Srinivasan, V. J. Optical coherence tomography for the quantitative study of cerebrovascular physiology. Journal of Cerebral Blood Flow & Metabolism. 31, 1339-1345 (2011).
  25. Hu, S., Wang, L. V. Photoacoustic imaging and characterization of the microvasculature. Journal of Biomedical Optics. 15, 011101-011101 (2010).
  26. Flecknell, P. A. . Laboratory animal anesthesia. , (1987).

Play Video

Cite This Article
Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A Polished and Reinforced Thinned-skull Window for Long-term Imaging of the Mouse Brain. J. Vis. Exp. (61), e3742, doi:10.3791/3742 (2012).

View Video