This article depicts the recording of individual cells from fluorescently tagged neuronal populations in the intact mouse retina. By using two-photon infrared excitation transgenetically labeled cells were targeted for patch-clamp recording to study their light responses, receptive field properties, and morphology.
Studying the physiological properties and synaptic connections of specific neurons in the intact tissue is a challenge for those cells that lack conspicuous morphological features or show a low population density. This applies particularly to retinal amacrine cells, an exceptionally multiform class of interneurons that comprise roughly 30 subtypes in mammals1. Though being a crucial part of the visual processing by shaping the retinal output2, most of these subtypes have not been studied up to now in a functional context because encountering these cells with a recording electrode is a rare event.
Recently, a multitude of transgenic mouse lines is available that express fluorescent markers like green fluorescent protein (GFP) under the control of promoters for membrane receptors or enzymes that are specific to only a subset of neurons in a given tissue3,4. These pre-labeled cells are therefore accessible to directed microelectrode targeting under microscopic control, permitting the systematic study of their physiological properties in situ. However, excitation of fluorescent markers is accompanied by the risk of phototoxicity for the living tissue. In the retina, this approach is additionally hampered by the problem that excitation light causes appropriate stimulation of the photoreceptors, thus inflicting photopigment bleaching and transferring the retinal circuits into a light-adapted condition. These drawbacks are overcome by using infrared excitation delivered by a mode-locked laser in short pulses of the femtosecond range. Two-photon excitation provides energy sufficient for fluorophore excitation and at the same time restricts the excitation to a small tissue volume minimizing the hazards of photodamage5. Also, it leaves the retina responsive to visual stimuli since infrared light (>850 nm) is only poorly absorbed by photopigments6.
In this article we demonstrate the use of a transgenic mouse retina to attain electrophysiological in situ recordings from GFP-expressing cells that are visually targeted by two-photon excitation. The retina is prepared and maintained in darkness and can be subjected to optical stimuli which are projected through the condenser of the microscope (Figure 1). Patch-clamp recording of light responses can be combined with dye filling to reveal the morphology and to check for gap junction-mediated dye coupling to neighboring cells, so that the target cell can by studied on different experimental levels.
The following description assumes that the experimenter has a basic understanding of retinal structure, patch-clamp recording, and two-photon microscopy. For useful information on establishing and running a patch-clamp setup and two-photon imaging system see Refs [7-12].
1. Animal and tissue preparation
2. Recordings
3. Representative Results:
The following results originate from a study on a mouse expressing green fluorescent protein (GFP) under the promoter for tyrosine hydroxylase13,14, the enzyme catalyzing the rate limiting step in catecholamine synthesis (TH::GFP mouse). Based on the brightness of the GFP-signal two distinct cell populations are distinguishable (Figure 2A). Cells expressing the higher GFP level possess cell bodies located in the inner nuclear layer (INL, Figure 2A) or displaced in the ganglion cell layer (GCL, Figure 2B) and stratify in the middle of the inner plexiform layer (IPL, Figure 2C). They were identified as type 2 cells14-16 and could systematically be studied with respect to morphology (Figure 3) and electrical activity (Figure 4) even though its population density only amounts to 250 cells/mm2.
Figure 1. Schematic representation of the experimental setup. Two-photon excitation (red dotted light path) of fluorophore-expressing cells in the intact retina enables visual targeting by a micropipette (green emission light path). The retina is subjected to optical stimuli projected through the condenser of the microscope (yellow light path), and cellular light responses are recorded.
Figure 2. GFP-expressing cells in a retinal flatmount of a TH::GFP mouse. Two populations can be distinguished by the brightness of the GFP-signal: type 1 cells (DA cells) located in the INL showing weak fluorescence (A, see arrowheads) and intensely labeled type 2 cells with cell bodies either in the INL (A, see arrows) or displaced in the GCL (B) and a dendritic stratification in stratum S3 of the IPL (C). Scale bars, 50 μm.
Figure 3.Morphology of a type 2 cell injected with the tracer Neurobiotin. The tracer was subsequently visualized by streptavidin-Cy3 binding (magenta). The micrograph, which is also depicting the GFP signal (green), is a projection of image stacks covering the GCL and IPL. Scale bar, 50 μm.
Figure 4. Light responses of a type 2 cell located in the GCL. Response pattern to white light full-field illumination of increasing intensity in the scotopic range. Stimulus intensity is given in photoisomerizations per rod per second (Rh*/rod/s). A prolonged stimulus of 3 s was used for better distinction of the response components at stimulus onset (ON response) and offset (OFF response).
This method offers the possibility to study electrical properties of specific neurons in the intact retina under visual guidance without influencing the adaptational condition of the retina. It is particularly suited for the characterization of cells that are at present rather poorly studied due to low population density like most populations of amacrine cells. Two-photon excitation permits high-resolution and high-contrast imaging even from deeper parts of the tissue17, a prerequisite for accurate targeting and successful patch-clamping of cells particularly in the INL with its high density of cell bodies.
The isolated mouse retina is viable for 3-4 h under the experimental conditions. If the second retina is stored in complete darkness under continuous carbogen gassing, it retains the purple color of unbleached photopigment and can be used after finishing experiments with the first retina. In the beginning, targeting the selected cell with the micropipette in the retinal wholemount is a bit challenging and requires some practice, especially when working in darkness. Including a fluorescent dye in the micropipette can simplify the procedure, because cell and micropipette are visible under two-photon excitation at the same time. However, adding components to the intracellular solution may impede gigaseal formation or cause the recording quality to suffer. Once successfully achieved, a good recording can last for about 1 h.
Whereas the infrared excitation light itself is only poorly absorbed by retinal photoreceptors, excited GFP-expressing cells emit light in the visible part of the spectrum. However, fluorophores are excited only in a small focal volume that is not likely to change the adaptational condition of the retina. All the more, excitation is only needed for targeting and can be switched off during recording of light responses.
The usefulness of this approach is already demonstrated by studies on specific populations of amacrine cells14,18 from which electrophysiological recordings otherwise would have been possible only by accident12. Finally, this powerful technique can further be extended by including a pharmacological approach14, Ca2+ imaging19 or by using injected cells for immunocytochemical studies or electron microscopy. That way, the functional position of a given cell type in the retinal circuitry can be unraveled.
The authors have nothing to disclose.
This work was supported by the Deutsche Forschungsgemeinschaft (WE849/16 1/2 to K.D. and R.W.). We are grateful to Thomas Euler (Töbingen, Germany) for the light stimulation software QDS.
Reagent/Equip-ment | Company | Catalogue number | Comments |
---|---|---|---|
Night-vision goggles | Gutzeit GmbH, Warthausen, Germany | Xtron F1 | includes a 800 nm light source |
Optical filter | Schott, Mainz, Germany | RG9 | longpass filter with cutoff at 690 nm |
Iris scissors | Fine Science Tools | 14061-09 | curved with 22 mm blade |
Spring scissors | Fine Science Tools | 15000-00 | straight with 3 mm blade |
Recording chamber | Luigs & Neumann GmbH, Ratingen, Germany | 200-100 500 0180 type A(TC) | Teflon chamber with bottom-mounted glass cover slip (approx. 0.15 mm; No. 200-100 500 0182) |
Flow heater | Multichannel Systems, Reutlingen, Germany | PH01, TC01 | heatable perfusion cannula with temperature sensor and temperature controller |
Laser scanning microscope | Leica Microsystems | DM LFS | controlled by Leica Confocal Software |
Air table | Newport | VH 3036W-OPT | |
Laser | Spectra-Physics | Tsunami Mode-locked Ti:sapphire laser | |
CCD camera | pco AG, Kelheim, Germany | PixelFly QE | including control software |
Micropipette glass capillaries | Hilgenberg, Malsfeld, Germany | 1408411 | |
Micropipette puller | Sutter Instrument | P-97 | |
Alexa Fluor 594 | Invitrogen | A-20004 | fluorescent dye |
Neurobiotin | Axxora | VC-SP-1120-M050 | non-fluorescent tracer |
Streptavidin-Cy3 | Dianova | 016-160-084 | |
Micromanipulator | Luigs & Neumann GmbH, Ratingen, Germany | 210-100 000 0010 | motorized Mini25 manipulator unit with display SM-5 |
Patch-clamp amplifier | npi electronic GmbH, Tamm, Germany | SEC-05LX npi | |
Digitizer | National Instruments | BNC-2090 | |
Data acquisition software WinWCP | John Dempster, University of Scotland, Glasgow, UK | http://spider.science.strath. ac.uk/sipbs/ software.htm | |
Visual stimulus generator QDS | Thomas Euler, University of Tübingen, Germany | has to be operated on a separate computer controlling 2 monitors (user interface, stimulus monitor) | |
Neutral density filters | ITOS, Mainz, Germany |