Science Education
>

Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution

PREPARAÇÃO DO INSTRUTOR
CONCEITOS
PROTOCOLO DO ALUNO
JoVE Journal
Biologia do Desenvolvimento
É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
JoVE Journal Biologia do Desenvolvimento
Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution

All experiments in this section were performed under approval from the National Heart, Lung, and Blood Institute (NHLBI) Animal Care and Use Committee.

1. Adult Mouse Ear Skin Collection

  1. Euthanize adult mice by carbon dioxide (CO2) exposure in a closed chamber and then confirm the euthanasia by cervical dislocation.
    NOTE: The experiment follows the National Institutes of Health (NIH) guideline for the euthanasia method.
  2. Dissect the ear from the base and place it in a 35 x 10 mm2 Petri dish containing 2 mL of Hank's Balanced Salt Solution (HBSS). Briefly trim hairs with scissors.
  3. Peel the posterior skin and anterior skin away carefully from the intervening cartilage.
    NOTE: Cartilage attaches to the anterior skin.
  4. Transfer the posterior and anterior skin separately to a 24 well plate containing 1 mL of ice-cold fresh 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) per well. Flatten the posterior and anterior skin in the 4% PFA.
  5. Fix the posterior and anterior skin with cartilage at 4 °C for 1 h.
  6. Wash the posterior and anterior skin 3 times for 5 min in 1 mL of PBS with gentle mixing on a mixer at room temperature.
  7. Transfer the posterior and anterior skin with cartilage to the bottom of a 35 x 10 mm2 Petri dish. Cut off the base region, which is folded and has adipose and connective tissues. Peel off the cartilage from anterior skin using fine curved forceps.
  8. Carefully remove the hairs, adipose tissues, and connective tissues from the inside of the posterior skin using fine curved tweezers. Keep the skin wet with PBS.

2. Whole-mount Immunohistochemical Staining of Mouse Ear Skin

NOTE: All experiments in the following sections were performed in accordance with the NIH laboratory safety guidelines.

  1. Prepare the blocking buffer. Filter 10% heat inactivated goat serum (HIGS) diluted in PBS with 0.2% triton X-100 (TX-100) blocking buffer, or 10% donkey serum (DS) diluted in PBS with 0.2% TX-100 blocking buffer, using a 0.45 µm filter unit.
  2. Transfer the posterior and anterior skin to a 24 well plate containing 1 mL of 10% HIGS blocking buffer or 10% DS blocking buffer per well. Incubate the skin for 30 min with gentle mixing on a mixer at room temperature.
  3. Prepare the primary antibody solution by diluting the primary antibodies (Table of Materials) in blocking buffer (either 10% HIGS or 10% DS).
    NOTE: Whole-mout immunohistochemical analysis of adult ear skin with antibodies to pan-neuronal marker neuron-specific class III β-tubulin (Tuj1, rabbit polyclonal IgG or mouse monocloncal IgG2a, 1:500 dilution at the final concentration of 2 µg/mL), pan-endothelial cell marker platelet endothelial cell adhesion molecule 1 (PECAM-1, hamster monoclonal IgG, 1:300 dilution at the final concentration of 3.3 µg/mL), myelin sheath marker myelin basic protein (MBP, rabbit polyclonal IgG, 1:200 dilution at the final concentration of 5 µg/mL) and inflammatory myeloid cell marker CD11b (Rat monoclonal IgG2b, 1:50 dilution at the final concentration of 20 µg/mL) was shown in Figure 1 and Figure 2. The skin was incubated with Cy3-conjugated antibody for vascular smooth muscle cell marker α smooth muscle actin (αSMA) together with secondary antibodies (2.6). The primary antibodies tested by ourselves were listed in Table of Materials. Multiple primary antibodies derived from different species can be mixed simultaneously.
  4. Transfer the posterior and anterior skin to new well containing 150 µL of the primary antibodies solution. Incubate the skin with gentle mixing on a mixer at 4 °C overnight.
  5. On the following day, transfer the posterior and anterior skin to new wells in the 24 well plate or aspirate the blocking buffer containing primary antibodies. Add 1 mL of either 2% HIGS diluted in PBS with 0.2% TX-100 washing buffer or 2% DS diluted in PBS with 0.2% TX-100 washing buffer. Wash the skin with 3 changes of the washing buffer every 15 min with gentle mixing on a mixer at room temperature.
  6. Prepare the secondary antibody solution (Table of Materials). Dilute secondary antibodies in the blocking buffer (either 10% HIGS or 10% DS) and filter the blocking buffer containing secondary antibodies through a 0.22 µm polyvinylidene difluoride (PVDF) membrane syringe filter connected to a 1 mL syringe.
    NOTE: Alexa 488 or 633-conjugated goat anti-rabbit IgG (H+L) or mouse IgG2a for Tuj1, Alexa 647-conjugated goat anti-hamster IgG (H+L) for PECAM-1, Alexa 488-conjugated goat anti-rabbit IgG (H+L) for MBP, and Alexa 594-conjugated rat IgG (H+L) for CD11b were used with 1:250 dilution at the final concentration of 8 µg/mL. The skin was incubated with Cy3-conjugated αSMA antibody (1:500 dilution at the final concentration of 2-3 µg/mL) in combination with these secondary antibodies.
  7. Centrifuge the solution at 13,000 x g for 10 min to remove aggregated particles of the secondary antibodies from the blocking buffer.
    NOTE: Different fluorescent conjugated secondary antibodies derived from different species can be mixed simultaneously.
  8. Transfer the posterior and anterior skin to well containing 150 µL of the secondary antibodies solution. Wrap the 24 well plate in aluminium foil to avoid light and incubate the skin for 1 h with gentle mixing on a mixer at room temperature.
  9. Transfer the posterior and anterior skin to new wells in the 24 well plate or aspirate the secondary antibody solution by pipet completely. Add 1 mL of either 2 % HIGS washing buffer or 2% DS washing buffer.
  10. Wrap the 24 well plate in aluminium foil and wash with 3 changes of the washing buffer every 15 min with gentle mixing on a mixer at room temperature.

3. Mounting the Ear Skin on Slide

  1. Place the skin on the bottom of a 35 x 10 mm2 Petri dish. Carefully remove the hairs, adipose tissues, connective tissues, dusts, and fibers from the inside of the skin using fine curved forceps under stereomicroscope with low illumination to minimize extensive photo bleaching. Keep the skin wet with PBS.
  2. Transfer the skin to an adhesive microscope slide using forceps. Place the posterior and anterior skin with the inside facing up on the slide. Flatten the skin using forceps.
  3. Mount the skin in a liquid anti-fade mounting medium to avoid photobleaching and preserve fluorescent signals. Make sure that no air bubbles are on or around the skin.
  4. Cover with coverslip on the skin samples carefully and store the mounted skin sample slides in the dark overnight at room temperature to allow the mounting media get firm. Seal the coverslip to the slide with nail polish and store it at 4 °C for long-term storage.

4. Confocal Microscopy

  1. Set up appropriate lasers for fluorophores. A confocal microscope with three laser sources (Argon 488 nm, DPSS 561 nm and HeNe 633 nm) is used in this experiment.
  2. Use the sequential scan tool, which simultaneously excites triple-stained samples, to avoid and reduce any overlap.
    NOTE: Images will be taken in a sequential manner using the sequential scan mode.
  3. Image under a 10X objective. Use the tile scan tool to capture the whole ear skin. Set Z-stack and make sure that the z-position covers the entire thickness of ear skin.

Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution

Learning Objectives

Adult mouse posterior ear skin (Figure 1A) and anterior ear skin (Figure 1B) were immunostained with antibodies to αSMA (red), Tuj1 (green), and PECAM-1 (blue). Posterior skin was immunostained to study neuro-immune distribution using antibodies to CD11b (red) and MBP (green), together with Tuj1 (blue) (Figure 2A). Distribution of CD11b+ inflammatory cells, including macrophages was detected at a single cellular resolution (Figure 2B).

Figure 1
Figure 1: Alignment ofperipheral nerves and blood vessels in adult ear skin. Whole-mount triple immunofluorescence confocal microscopy of posterior and anterior ear skin with antibodies to αSMA (red), Tuj1 (green), and PECAM-1 (blue) is shown. (A) VSMC-covered large-diameter blood vessels align with peripheral nerves in the posterior ear skin. (B) Smaller-diameter blood vessels covered with VSMCs align with smaller-diameter peripheral nerve bundles in the anterior ear skin. Scale bar = 1 mm Please click here to view a larger version of this figure.

Figure 2
Figure 2: Myelination of peripheral nerves and CD11b+ myeloid cell distribution in adult ear skin. Whole-mount triple immunofluorescence confocal microscopy of posterior ear skin with antibodies to CD11b (red) and MBP (green), together with Tuj1 (blue), is shown. (A) Medium-to-large diameter peripheral nerves are myelinated. (B) Close-up image in (A). CD11b+ inflammatory cells distribute evenly in the posterior ear skin. Scale bar = 1 mm (A), 100 µm (B). Please click here to view a larger version of this figure.

List of Materials

10 x Phosphate Buffered Saline KD Medical RGE-3210 PBS, without Ca2+/Mg2+
Hank’s Balanced Salt Solution Gibco 14025-092 HBSS, with Ca2+/Mg2+
16% Paraformaldehyde Electron Microscopy Sciences 15710 PFA, fixative, diluted in PBS
Triton X-100 Sigma X100 Detergent
Normal goat serum Gibco 16210064 Component of blocking/washing buffer
Normal donkey serum Jackson Immuno research 017-000-121 Component of blocking/washing buffer
Curved fine tweezers Dumont RS-5047
Curved tweezers Integra Miltex Vantage V918-782, V918-784
Filter Unit 0.45 mm Thermo Scientific 157-0045 For filtration
1 mL syringe Coviden 8881501400 For filtration
Syringe filter Unit 0.22 mm Millex-GV SLGVR04NL For filtration
ProLong Gold Thermo Scientific P36934 Anti-fade mounting medium
Nail Polish Electron Microscopy Sciences 72180 For sealing
Dissecting microscope Leica MZ95
Confocal microscope Leica TCS SP5
Photoshop CC 2017 Adobe Graphics editor software
Illustrator CC 2017 Adobe Graphics editor software
Image J NIH Image processing software
Anti-PECAM-1 (CD31) antibody Millipore MAB1398Z Hamster IgG, vascular endothelial cell marker, 1:300
Anti-PECAM-1 (CD31) antibody BD Pharmingen 553369 Rat IgG2a kappa, vascular endothelial cell marker, 1:300
Anti-aSMA antibody conjugated with cy-3 Sigma C6198 Mouse IgG2a, vascular smooth muscle cell marker, 1:500
Anti-EphB1 antibody Santa Cruz sc-9319 Goat polyclonal, venous endothelial cell marker, 1:100
Anti-neuron-specific Class III b-tubulin (Tuj1) Abcam AB18207 Tuj1, Rabbit polyclonal IgG, pan-axonal marker, 1:500
Anti-Tuj1 antibody Covance MMS-435P Mouse IgG2a, pan-axonal marker, 1:500
Anti-MBP antibody Abcam AB40390 Rabbit polyclonal IgG, myelination marker, 1:200
Anti-Tyrosine Hydroxylase antibody Chemicon AB152 Rabbit polyclonal, sympathetic neuron marker, 1:500
Anti-Peripherin antibody Chemicon AB1530 Rabbit polyclonal, peripheral neuron marker, 1:1000
Anti-CD11b antibody Bio-Rad MCA74G Rat IgG2b, inflammatory cell marker (macrophages), 1:50
Anti-CD45 antibody Thermo Fisher Scientific 14-0451-85 Rat IgG2b kappa, pan-hematopoietic cell marker, 1:500
Anti-CD3 antibody Bio-Rad MCA1477T Rat IgG1, immune cell marker, 1:100
Anti-CD45R (B220) antibody Thermo Fisher Scientific 14-0452 Rat IgG2a kappa, inflammatory cell marker, 1:200
Anti-GFP antibody Thermo Fisher Scientific A11122 Rabbit polyclonal, 1:300
Anti-GFP antibody Abcam Ab13970 Chicken polyclonal, 1:500
Anti-b-gal antibody Cappel 55976 Rabbit polyclonal, 1:5000
Anti-RFP antibody Abcam Ab62341 Rabbit polyclonal, 1:300
Goat anti-rabbit IgG (H+L) Alexa 488 Thermo Fisher Scientific A11034 Rabbit polyclonal secondary antibody, 1:250
Goat anti-hamster IgG (H+L) Alexa 647 Jackson Immuno research 127-605-160 Hamster polyclonal secondary antibody, 1:250
Goat anti-rat IgG (H+L) Alexa 594 Jackson Immuno research 112-585-167 Rat polyclonal secondary antibody, 1:250
Goat anti-mouse IgG2a Alexa 633 Thermo Fisher Scientific A21136 Mouse IgG2a secondary antibody, 1:250

Preparação do Laboratório

Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

Procedimento

Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

Tags