Summary

使用牛单核细胞来源的树突状细胞测定疫苗免疫原性

Published: May 19, 2023
doi:

Summary

该方法描述了牛单核细胞来源的树突状细胞(MoDC)的产生及其在牛潜在兽用疫苗开发过程中抗原候选物体 外评估中的 应用。

Abstract

树突状细胞(DC)是免疫系统中最有效的抗原呈递细胞(APC)。它们在生物体中巡逻寻找病原体,并通过连接先天性和适应性免疫反应在免疫系统中发挥独特的作用。这些细胞可以吞噬细胞,然后将捕获的抗原呈递给效应免疫细胞,从而引发多种免疫反应。本文展示了从牛外周血单核细胞(PBMCs)中分离的牛单核细胞来源的树突状细胞(MoD)的体 生成标准化方法及其在疫苗免疫原性评估中的应用。

采用磁性细胞分选从PBMC中分离CD14+单核细胞,并用白细胞介素(IL)-4和粒细胞-巨噬细胞集落刺激因子(GM-CSF)补充完全培养基诱导CD14+单核细胞分化为幼稚MoDC。通过检测主要组织相容性复合物II(MHC II),CD86和CD40细胞表面标志物的表达来确认未成熟MoDC的产生。市售狂犬病疫苗用于冲击未成熟的MoDC,随后与幼稚淋巴细胞共培养。

抗原脉冲MoDC和淋巴细胞共培养的流式细胞术分析揭示了通过Ki-67,CD25,CD4和CD8标志物的表达刺激T淋巴细胞增殖。使用定量PCR分析 IFN-γKi-67的mRNA表达表明,MoDCs可以在该 体外 共培养系统中诱导淋巴细胞的抗原特异性启动。此外,使用 ELISA 评估的 IFN-γ 分泌显示,狂犬病疫苗脉冲 MoDC 淋巴细胞共培养的滴度 (**p < 0.01) 显著高于非抗原脉冲 MoDC 淋巴细胞共培养。这些结果表明,这种 体外 MoDC测定法测量疫苗免疫原性的有效性,这意味着该测定可用于在进行 体内 试验之前确定牛的潜在候选疫苗,以及商业疫苗的疫苗免疫原性评估。

Introduction

兽医疫苗接种是畜牧业和健康的一个重要方面,因为它通过提供保护,防止影响全球畜牧业的疾病,有助于改善粮食安全和动物福利1。评估可能候选疫苗的免疫原性的有效体 方法将有助于加速疫苗的开发和生产过程。因此,有必要通过基于 体外 研究的创新方法来扩展免疫测定领域,因为这将有助于揭示与免疫和病原体感染相关的免疫过程的复杂性。目前,需要定期取样(例如血液和脾脏)的 体内 动物免疫和激发研究用于测量候选疫苗和佐剂的免疫原性。这些检测昂贵、耗时且具有伦理意义,因为在大多数情况下,动物安乐死是在试验结束时进行的。

作为体内测定的替代方法,外周血单核细胞(PBMC)已被用于评估疫苗诱导的体免疫反应2。PBMC是由70%-90%的淋巴细胞,10%-20%的单核细胞和有限数量的树突状细胞(DC,1%-2%)组成的异质细胞群3。PBMC含有抗原呈递细胞(APC),例如B细胞,单核细胞和DC,它们不断巡逻生物体,寻找感染或组织损伤的迹象。局部分泌的趋化因子通过与细胞表面受体结合,促进APCs在这些位点的募集和激活。在单核细胞的情况下,趋化因子引导它们的命运分化成DC或巨噬细胞4。一旦DC遇到并捕获病原体,它们就会迁移到次级淋巴器官,在那里它们可以分别使用主要组织相容性复合体(MHC)I类或II类表面蛋白将加工过的病原体肽抗原呈递到CD8 + T细胞或CD4 + T细胞,从而触发免疫反应56

DC在协调针对各种病原体的保护性免疫应答中发挥的关键作用使其成为了解细胞内免疫机制的有趣研究目标,特别是在设计针对感染因子的疫苗和佐剂时7。由于可以从PBMC获得的DC比例相当小(1%-2%),因此单核细胞已被用于体外产生DC。这些单核细胞衍生的DC(MoDC)最初是作为癌症免疫治疗中可能的治疗策略开发的9。最近,MoDC已被用于疫苗研究10,11,12经典单核细胞是MoDC生产的主要亚型(89%)13MoDCs的体外生产以前是通过添加粒细胞-巨噬细胞集落刺激因子(GM-CSF)与其他细胞因子(如白细胞介素-4(IL-4)、肿瘤坏死因子α(TNF-α)或IL-13141516)联合给药来实现的。

体外MoDC测定的成功依赖于抗原刺激的成熟MoDC调节特定于检测到的抗原类型的免疫反应的程度和类型的能力17。MoDCs识别和呈递的病原体类型决定了CD4+ T辅助(Th)细胞分化为Th1,Th2或Th17效应细胞,并且以病原体特异性分泌细胞因子谱为特征。针对细胞内病原体引发Th1反应,并导致干扰素-γ(IFN-γ)和肿瘤坏死因子β(TNF-β)的分泌,后者调节吞噬细胞依赖性保护。针对寄生生物触发 Th2 反应,其特征在于 IL-4、IL-5、IL-10 和 IL-13 分泌,从而启动吞噬细胞非依赖性体液保护。Th17 提供中性粒细胞依赖性保护,防止由分泌 IL-17、IL-17F、IL-6、IL-22 和 TNF-α18192021 介导的细胞外细菌和真菌感染。根据以前的研究,已经注意到并非所有病原体都属于预期的细胞因子谱。例如,皮肤MoDCs响应利什曼原虫寄生虫感染,刺激CD4 + T细胞和CD8 + T细胞分泌IFN-γ,从而诱导保护性促炎Th1反应22

研究还表明,在用沙门氏菌脂多糖(LPS)引发的鸡MoDC中,可以通过激活Th1和Th2反应来诱导对鼠伤寒沙门氏菌的可变反应,而加里纳鲁沙门氏菌单独诱导Th2反应,这可以解释后者对MoDC清除率的更高抵抗力23在犬和人类MoDC中也报道了针对犬布鲁氏菌(B. canis)的MoDCs的激活,这意味着这可能代表人畜共患感染机制24。用犬双歧杆菌引发的人类MoDC诱导强烈的Th1反应,赋予对严重感染的抵抗力,而犬MoDC诱导显性Th17反应,Th1反应降低,随后导致慢性感染的建立25。与单独使用非结合的口蹄疫病毒相比,牛 MoDC 对与免疫球蛋白 G (IgG) 偶联的口蹄疫病毒 (FMDV) 的亲和力增强,因为 MoDC 形成病毒抗体复合物以响应前10 种病毒抗体复合物。综上所述,这些研究显示了MoDC如何用于分析病原体感染期间免疫反应的复杂性。适应性免疫应答可以通过量化与淋巴细胞增殖相关的特定标志物来评估。Ki-67是一种仅在分裂细胞中检测到的细胞内蛋白,被认为是增殖研究的可靠标志物26,同样,在活化后期在T细胞表面表达的CD25对应于淋巴细胞增殖2728

本研究展示了一种用于体外产生牛MoDC的标准化方法,然后将其应用于用于测试疫苗免疫原性的体外免疫测定中。市售狂犬病疫苗(RV)用于验证该测定的有效性。通过流式细胞术、实时定量聚合酶链反应(qPCR)和酶联免疫吸附测定法(ELISA)测定T淋巴细胞活化和增殖,分析成熟的细胞活化标志物(如Ki-67和CD25)以及IFN-γ28293031的分泌。在MoDC测定期间不进行动物或人体实验试验。

Protocol

采血由经过认证的兽医服务机构根据奥地利卫生和食品安全局(AGES)的道德准则进行,并符合公认的动物福利标准32。该研究获得了奥地利农业部的伦理批准。 MoDCs生成的实验设计及其后续应用如图1所示。 1. 生产幼稚的MoDC 注意:全血样本是通过颈静脉穿刺和肝素化真空管从单个无病原体的小牛获得的?…

Representative Results

该方法描述了牛MoDC的体外生成,用于在进行体内研究之前评估候选疫苗抗原。图1说明了牛MoDC生成的实验方案以及MoDC在体外测定中的应用。使用基于磁性的细胞分选技术,可以从收获的PBMC中收集约2600万个CD14 +肌细胞,这些PBMC以前是从50 mL牛血中分离出来的。不含CD14+单核细胞的洗脱细胞组分富含淋巴细胞,可用作幼稚CD4+和CD8+ T?…

Discussion

本研究展示了一种用于生成和分型牛 MoDC 的标准化体 方法,以及随后用于测量商业疫苗(例如 RV)的疫苗免疫原性。牛MoDC可用作筛选针对牛病的潜在疫苗抗原的工具,并在进行 体内 动物试验之前根据免疫反应预测其潜在的临床影响。生成的MoDC是根据其形态,表型和功能特征来鉴定的。我们发现,源自牛CD14 + 单核细胞的MoDC表现出DC中可见的特征,例如延伸的树突,用于?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢Eveline Wodak博士和Angelika Loistch博士(AGES)在确定动物健康状况和提供BTV方面的支持,感谢Bernhard Reinelt博士提供牛血,感谢原子能机构的Bharani Settypalli博士和William Dudon博士分别就实时聚合酶链反应实验和语言编辑提供有用的建议。

Materials

ACK Lysing Buffer Gibco, Thermo Fisher A1049201 Ammonium-Chloride-Potassium buffer for lysis of residual RBCs in harvested PBMC Fraction
BD Vacutainer Heparin Tubes Becton, Dickinson (BD) and Company 366480 10 mL, additive sodium heparin 158 USP units, glass tube, 16 x 100 mm size
Bovine Dendritic Cell Growth Kit Bio-Rad, UK PBP015KZZ Cytokine cocktail composed of recombinant bovine IL-4 and GM-CSF
Bovine IFN-γ ELISA Kit Bio-Rad MCA5638KZZ Kit use for measuring IFN-γ expression in culture supernatant
CD14 Antibody Bio-Rad MCA2678F Mouse anti-bovine CD14 monoclonal antibody, clone CC-G33, isotype IgG1
CD25 Antibody Bio-Rad MCA2430PE Mouse anti bovine CD25 monoclonal antibody, clone IL-A11, isotype IgG1
CD4 Antibody Bio-Rad MCA1653A647 Mouse anti bovine CD4 monoclonal antibody, clone CC8, isotype IgG2a
CD40 Antibody Bio-Rad MCA2431F Mouse anti-bovine CD40 monoclonal antibody, clone IL-A156, isotype IgG1
CD8 Antibody Bio-Rad MCA837F Mouse anti bovine CD8 monoclonal antibody, clone CC63, isotype IgG2a
CD86 Antibody Bio-Rad MCA2437PE Mouse anti-bovine CD86 monoclonal antibody, clone IL-A190, isotype IgG1
CFX96 Touch Real-Time PCR Detection System Bio-Rad Thermal cycler PCR machine
Corning Centrifuge Tube Falcon Corning  352096 & 352070 15 mL and 50 mL, high-clarity poypropylene conical bottom, graduated, sterial, seal screw cap, falcon tube
Cytofix/Cytoperm Plus BD Bio Sciences 555028 Fixation/permeabilization kit with BD golgiPlug, use for flow cytometer cell staining
Ethanol Sigma Aldrich 1009832500 Absolute for analysis EMSURE ACS,ISO, Reag. Ph Eur
Fetal Bovine Serum (FBS) Gibco, Thermo Fisher 10500064 Qualified, heat inactivated
Ficoll Plaque PLUS GE Health care Life Sciences, USA 341691 Lymphocyte-isolation medium
FlowClean Cleaning Agent Beckman Coulter, Life Sciences A64669 500 mL
FlowJo FlowJo, Becton, Dickinson (BD) and Company, LLC, USA Flow cytometer Histogram software
FlowTubes/ FACS  (Fluorescence-activated single-cell sorting) Tube Falcon Corning  352235 5 mL, sterial, round bottom polystyrene test tube with cell strainer snap cap, use in flow cytometry analysis
Fluoresceinisothiocynat-Dextran Sigma Aldrich, Germany 60842-46-8 FITC-dextran MW
Gallios Flow Cytometer Beckman Coulter Flow cytometer machine
Hard-Shell 96-Well PCR Plates Bio-Rad HSP9601 96 well, low profile, thin wall, skirted, white/clear
Human CD14 MicroBeads Miltenyi Bioteck, Germany 130-050-201 2 mL microbeads conjugated to monoclonal anti-human CD14 antibody isotype IgG2a, used for selection of bovine monocytes from PBMCs
Kaluza Beckman Coulter, Germany Flow cytometer multicolor data analysis software
MACS Column Miltenyi Bioteck, Germany 130-042-401 Magnetic activated cell sorting or immune magentic cell separation colum for separation of various CD14 cell population based on cell surface antigens
MHC Class II DQ DR Polymorphic Antibody Bio-Rad MCA2228F Mouse anti-sheep MHC Class II DQ DR Polymorphic:FITC, clone 49.1, isotype IgG2a, cross reactive with bovine
Microcentrifuge Tube Sigma Aldrich HS4325 1.5 mL, conical bottom, graduated, sterial tube
Microsoft Power Point Microsoft The graphical illustrations of experimental design
Mouse IgG1 Negative Control:FITC for CD14, CD40 Antibody Bio-Rad MCA928F Isotype control CD14 and CD40 monoclonal antibody 
Mouse IgG1 Negative Control:PE for CD86 Antibody Bio-Rad MCA928PE Isotype control CD86 monoclonal antibody 
Mouse IgG1 Negative Control:RPE for CD25 Antibody Bio-Rad MCA928PE Isotype control CD25 monoclonal antibody 
Mouse IgG2a Negative Control:FITC for MHC Class II Antibody Bio-Rad MCA929F Isotype control for MHC class II monoclonal antibody 
Nobivac Rabies MSD Animal Health, UK 1 µL/mL of cell cultured inactivated vaccine containing > 2 I.U./mL Rabies virus strain
Optical seals Bi0-Rad TCS0803 0.2 mL flat PCR tube 8-cap strips, optical, ultraclear, compatible for qPCR machine
Penicillin-Streptomycin Gibco, Thermo Fisher 15140122 100 mL
Phosphate Buffer Saline (PBS) Gibco, Thermo Fisher 10010023 pH 7.4, 1x concentration
Prism – GraphPad 5 Software  Dotmatics Statistical software
Purified Anti-human Ki-67 antibody Biolegend, USA 350501 Monoclonal antibody, cross reactive with cow, clone ki-67
Purified Mouse IgG1 k Isotype Ctrl Antibody Biolegend 400101 Isotype control for Ki-67 monoclonal antibody
READIDROP Propidium Iodide BD Bio Sciences 1351101 Live/dead cell marker used for flow cytometry, amine reactive dye
Recombinant Human IL-2 Protein R&D System, USA 202-IL-010/CF Interleukin-2, 20 ng/ml
RNeasy Mini Kit Qiagen 74106 Kit use for extraction of total RNA; RLT buffer = lysis buffer; RW1 buffer = stringent guanidine-containing washing buffer; RDD buffer = DNase buffer; RPE buffer = mild wash buffer; RNaseOUT = RNase inhibitor.
RPMI 1640 Medium Sigma Aldrich R8758 Cell culture media with L-glutamine and sodium bicarbonate
SMART-servier medical art  Les Laboratories Servier Licensed under a creative commons attribution 3.0 unported license
SsoAdvanced Universal SYBR Green Supermix Bio-Rad 172-5270 2x qPCR mix conatins dNTPs, Ss07d fusion polymerase, MgCl2, SYBR Green I supermix = supermix, ROX normalization dyes.
SuperScript III First-Strand Synthesis System Invitrogen, Thermo Fisher 18080051 Kit for cDNA synthsis
Tissue Culture Test plate 24 TPP, Switzerland 92024 24 well plate, sterilized by radiation , growth enhanced treated, volume 3.18 mL
Trypan Blue Solution Gibco, Thermo Fisher 15250061 0.4%, 100 mL, dye to assess cell viability
UltraPure DNase/RNase-Free Distilled Water Invitrogen, Thermo Fisher 10977023 0.1 µm membrane filtered distilled water
VACUETTE Heparin Blood Collection Tubes Thermo Fisher Scientific 15206067 VACUETTE Heparin Blood Collection Tubes have a green top and contain spray-dried lithium, sodium or ammonium heparin on the inner walls and are usedin clinical chemistry, immunology and serology. The anticoagulant heparin activates antithrombin, which blocks the clotting cascade and thus produces a whole blood/plasma sample.
Water Sigma Aldrich W3500-1L Sterile-filtered, bioReagent suitable for cell culture

Referências

  1. Roth, J. A., Sandbulte, M. R., Metwally, S., El Idrissi, A., Viljoen, G. The role of veterinary vaccines in livestock production, animal health, and public health. In Veterinary Vaccines: Principles and Applications. , 1-10 (2021).
  2. Roberts, N. J., Douglas, R. G., Simons, R. M., Diamond, M. E. Virus-induced interferon production by human macrophages. The Journal of Immunology. 123 (1), 365-369 (1979).
  3. Kleiveland, C. R., Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H. Peripheral blood mononuclear cells. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. , 161-167 (2015).
  4. Shi, C., Pamer, E. G. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology. 11 (11), 762-774 (2011).
  5. Domínguez, P. M., Ardavín, C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunological Reviews. 234 (1), 90-104 (2010).
  6. Steinman, R. M. Linking innate to adaptive immunity through dendritic cells. Novartis Foundation Symposium. 279, 101-109 (2006).
  7. Vandebriel, R. J., Hoefnagel, M. H. N. Dendritic cell-based in vitro assays for vaccine immunogenicity. Human Vaccines and Immunotherapeutics. 8 (9), 1323-1325 (2012).
  8. Hopewell, E. L., Cox, C. Manufacturing dendritic cells for immunotherapy: Monocyte enrichment. Molecular Therapy. Methods and Clinical Development. 16, 155-160 (2020).
  9. Morse, M. A., Zhou, L. -. J., Tedder, T. F., Lyerly, H. K., Smith, C. Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy. Annals of Surgery. 226 (1), 6-16 (1997).
  10. Robinson, L., et al. Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells. Journal of Virology. 85 (5), 2212-2223 (2011).
  11. Kangethe, R. T., Pichler, R., Chuma, F. N. J., Cattoli, G., Wijewardana, V. Bovine monocyte derived dendritic cell based assay for measuring vaccine immunogenicity in vitro. Veterinary Immunology and Immunopathology. 197, 39-48 (2018).
  12. Harwood, L. J., Gerber, H., Sobrino, F., Summerfield, A., McCullough, K. C. Dendritic cell internalization of foot-and-mouth disease virus: Influence of heparan sulfate binding on virus uptake and induction of the immune response. Journal of Virology. 82 (13), 6379-6394 (2008).
  13. Hussen, J., et al. Phenotypic and functional heterogeneity of bovine blood monocytes. PLoS One. 8 (8), 71502 (2013).
  14. Shi, Y., et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: What we do and don’t know. Cell Research. 16 (2), 126-133 (2006).
  15. Zhou, L. -. J., Tedder, T. F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America. 93 (6), 2588-2592 (1996).
  16. Bautista, E. M., Nfon, C., Ferman, G. S., Golde, W. T. IL-13 replaces IL-4 in development of monocyte derived dendritic cells (MoDC) of swine. Veterinary Immunology and Immunopathology. 115 (1-2), 56-67 (2007).
  17. León, B., Ardavín, C. Monocyte-derived dendritic cells in innate and adaptive immunity. Immunology and Cell Biology. 86 (4), 320-324 (2008).
  18. Berger, A. Th1 and Th2 responses: What are they. British Medical Journal. 321 (7258), 424 (2000).
  19. Romagnani, S. Th1/th2 cells. Inflammatory Bowel Diseases. 5 (4), 285-294 (1999).
  20. Kaiko, G. E., Horvat, J. C., Beagley, K. W., Hansbro, P. M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response. Immunology. 123 (3), 326-338 (2008).
  21. Duckworth, B. C., Groom, J. R. Conversations that count: Cellular interactions that drive T cell fate. Immunological Reviews. 300 (1), 203-219 (2021).
  22. León, B., López-Bravo, M., Ardavín, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity. 26 (4), 519-531 (2007).
  23. Singh, D., et al. Differential responses of chicken monocyte-derived dendritic cells infected with Salmonella gallinarum and Salmonella typhimurium. Scientific Reports. 11, 17214 (2021).
  24. Pujol, M., et al. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Veterinary Research. 48, 72 (2017).
  25. Pujol, M., Borie, C., Montoya, M., Ferreira, A., Vernal, R. Brucella canis induces canine CD4+ T cells multi-cytokine Th1/Th17 production via dendritic cell activation. Comparative Immunology, Microbiology and Infectious Diseases. 62, 68-75 (2019).
  26. Lašťovička, J., Rataj, M., Bartůňková, J. Assessment of lymphocyte proliferation for diagnostic purpose: Comparison of CFSE staining, Ki-67 expression and 3H-thymidine incorporation. Human Immunology. 77 (12), 1215-1222 (2016).
  27. Reddy, M., Eirikis, E., Davis, C., Davis, H. M., Prabhakar, U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: An in vitro model to monitor cellular immune function. Journal of Immunological Methods. 293 (1-2), 127-142 (2004).
  28. Shatrova, A. N., et al. Time-dependent regulation of IL-2R α-chain (CD25) expression by TCR signal strength and IL-2-induced STAT5 signaling in activated human blood T lymphocytes. PLoS One. 11 (12), 0167215 (2016).
  29. Shedlock, D. J., et al. Ki-67 staining for determination of rhesus macaque T cell proliferative responses ex vivo. Cytometry, Part A. 77 (3), 275-284 (2010).
  30. Yen, H. -. R., et al. Tc17 CD8 T cells: Functional plasticity and subset diversity. Journal of Immunology. 183 (11), 7161-7168 (2009).
  31. Kawamura, I., et al. IFN-gamma-producing ability as a possible marker for the protective T cells against Mycobacterium bovis BCG in mice. Journal of Immunology. 148 (9), 2887-2893 (1992).
  32. Agriculture, Forestry, Regions and Water Management. The Federal Act on Animal Welfare (Tierschutzgesetz – TSchG). Federal Law Gazette I 2004/118 Available from: https://info.bml.gv.at/en/topics/agriculture/agriculture-in-austria/animal-production-in-austria/animal-welfare-act.html (2005)
  33. Corripio-Miyar, Y., et al. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Veterinary Research. 46, 112 (2015).
  34. Wijewardana, V., et al. Generation of canine dendritic cells from peripheral blood monocytes without using purified cytokines. Veterinary Immunology and Immunopathology. 114 (1-2), 37-48 (2006).
  35. Švajger, U., Jeras, M. Optimal dendritic cell differentiation in rpmi media requires the absence of HEPES buffer. Immunological Investigations. 40 (4), 413-426 (2011).
  36. Chometon, T. Q., et al. A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS One. 15 (4), 0231132 (2020).
  37. Blanco, F. C., et al. Semi-stable production of bovine IL-4 and GM-CSF in the mammalian episomal expression system. Journal of Veterinary Research. 65 (3), 315-321 (2021).
  38. Sallusto, F., Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medicine. 179 (4), 1109-1118 (1994).
  39. Cho, K. -. J., Roche, P. A. Regulation of MHC class II-peptide complex expression by ubiquitination. Frontiers in Immunology. 4, 369 (2013).
  40. Sansom, D. M., Manzotti, C. N., Zheng, Y. What’s the difference between CD80 and CD86. Trends in Immunology. 24 (6), 313-318 (2003).
  41. Han Lee, G., et al. The role of CD40 expression in dendritic cells in cancer biology; a systematic review. Current Cancer Drug Targets. 14 (7), 610-620 (2014).
  42. Tanaka, H., Demeure, C. E., Rubio, M., Delespesse, G., Sarfati, M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors: Role of stimulator/responder ratio. Journal of Experimental Medicine. 192 (3), 405-412 (2000).
  43. Klechevsky, E., et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood. 116 (10), 1685-1697 (2010).
  44. Schlienger, K., Craighead, N., Lee, K. P., Levine, B. L., June, C. H. Efficient priming of protein antigen-specific human CD4+ T cells by monocyte-derived dendritic cells. Blood. 96 (10), 3490-3498 (2000).
  45. Soares, A., et al. Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. Journal of Immunological Methods. 362 (1-2), 43-50 (2010).
  46. Zhu, J., Yamane, H., Paul, W. E. Differentiation of effector CD4 T cell populations. Annual Review of Immunology. 28, 445-489 (2009).
  47. Bachmann, M. F., Oxenius, A. Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO Reports. 8 (12), 1142-1148 (2007).
  48. Koup, R. A., Douek, D. C. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harbor Perspectives in Medicine. 1 (1), 007252 (2011).
  49. Sassu, E. L., et al. Development and evaluation of a real-time PCR panel for the detection of 20 immune markers in cattle and sheep. Veterinary Immunology and Immunopathology. 227, 110092 (2020).
check_url/pt/64874?article_type=t

Play Video

Citar este artigo
Liaqat, F., Kangethe, R. T., Pichler, R., Liu, B., Huber, J., Wijewardana, V., Cattoli, G., Porfiri, L. Determination of Vaccine Immunogenicity Using Bovine Monocyte-Derived Dendritic Cells. J. Vis. Exp. (195), e64874, doi:10.3791/64874 (2023).

View Video