Summary

破碎非常规储层微尺度超临界CO泡沫运输的高压 试验微流体制造技术

Published: July 02, 2020
doi:

Summary

本文介绍了一种协议,以及两种微流体制造技术的比较研究,即光刻/湿蚀/热粘结和选择性激光诱导蚀刻(SLE),适用于高压条件。这些技术构成直接观测储层条件下代理渗透介质和破碎系统中流体流动的有利平台。

Abstract

许多微流体平台的压力限制是断裂介质微流体实验研究中的一个重大挑战。因此,这些平台尚未被充分利用,无法直接观测断裂中的高压传输。这项工作引入了微流体平台,能够直接观察具有代理渗透介质和破碎系统的器件中的多相流。这些平台提供了解决重要和及时问题的途径,例如与 CO2捕获、利用和存储相关的问题。这项工作提供了制造技术和实验设置的详细说明,可用于分析超临界CO2(SCCO2)泡沫的行为,其结构和稳定性。这些研究提供了关于加强石油回收过程和水力裂缝在非常规储层资源回收中的作用的重要见解。本工作介绍了使用两种不同技术开发的微流体器件的比较研究:光刻/湿蚀/热粘结与选择性激光诱导蚀刻。这两种技术都使器件具有化学和物理抗性,能够耐受与感兴趣的地下系统对应的高压和温度条件。这两种技术都为高精度蚀刻微通道和能够利用的片上实验室设备提供了路径。然而,光刻/湿蚀刻能够制造具有复杂几何形状的复杂通道网络,这将是激光蚀刻技术的一项具有挑战性的任务。这项工作总结了分步光刻、湿蚀和玻璃热粘结方案,并介绍了泡沫运输的代表性观测结果,与非常规紧固和页岩层的石油回收有关。最后,本文描述了使用高分辨率单色传感器来观察 scCO2泡沫行为,其中同时观察整个渗透介质,同时保留解析小至 10 μm 的特征所需的分辨率。

Introduction

水力压裂已经使用相当长一段时间,作为刺激流量的手段,特别是在紧密地层1。水力压裂所需的大量水与环境因素、供水问题2、地层损伤3、成本4和地震影响5。因此,人们对替代压裂方法(如无水压裂和使用泡沫)的兴趣正在上升。替代方法可提供重要好处,如减少用水6,与水敏感地层7相容,最小至无堵塞地层8,压裂液9,可回收性10,易于清理和支撑承载能力6。CO2泡沫是一种潜在的无水压裂液,与传统压裂技术6、7、11相比,有助于提高石油液体的高效生产,提高地下CO2的储存能力,其环境足迹可能更小

在最佳条件下,超临界CO2泡沫(SCCO2泡沫)在压力超过给定储层的最低杂容压力(MMP)提供一个多接触杂误系统,能够直接流入层层中渗透性较低的部分,从而提高清扫效率和资源回收12,13。scCO2提供扩散和液体等气体密度 14,非常适合地下应用,如石油回收和碳捕获、利用和储存 (CCUS)13。地下泡沫成分的存在有助于减少CO215长期储存中泄漏的风险。此外,scCO2泡沫系统的耦合压缩热冲击效应可作为有效的压裂系统11CO2泡沫系统在地下应用中的特性已在各种尺度上进行了广泛的研究,例如砂包系统中其稳定性和粘度的特性,以及它在位移工艺3、6、12、15、16、17中的有效性断裂水平泡沫动力学及其与多孔介质的相互作用与在紧密和断裂地层中使用泡沫直接相关的方面较少。

微流体平台可直接可视化和量化相关的微尺度过程。这些平台提供对流体动力学和化学反应的实时控制,以研究孔径尺度现象以及回收考虑1.泡沫的生成、传播、运输和动力学可以在模拟断裂系统和与从紧密地层中回收石油有关的断裂-微裂纹-基质导流通路中可视化。断裂和矩阵之间的流体交换根据几何体直接表示18从而强调简单化和现实性表现的重要性。多年来,已经开发了一些相关的微流体平台,以研究各种过程。例如,Tigglaar 和同事讨论玻璃微反应器设备的制造和高压测试,通过光纤的平面连接来测试通过连接到微反应器的玻璃毛细管的流量19.他们提出了与粘结检查、压力测试和现场反应监测相关的发现。 1H NMR 光谱。因此,对于相对较大的喷射率、用于渗透介质中复杂流体原位可视化的多相流体预生成系统而言,其平台可能并不尽如人意。Marre 和同事讨论了使用玻璃微反应器来研究高压化学和超临界流体过程的问题20.它们包括作为应力分布的有限元模拟的结果,以探索负载下模块化器件的机械性能。它们使用非超前模块化连接进行可互换的微反应器制造,硅/Pyrex微流体器件不透明;这些设备适用于化学反应工程中运动学研究、合成和生产,其中可视化不是主要问题。缺乏透明度使得这个平台不适合在代理介质中直接、就地可视化复杂流体。Paydar 和同事提出了一种使用 3D 打印构建模块化微流体原型的新方法21.这种方法似乎不适合高压应用,因为它使用光治聚合物,并且器件只能承受高达 0.4 MPa。文献中报告与破碎系统运输有关的大多数微流体实验研究侧重于环境温度和相对低压条件1.有几项研究侧重于直接观测模拟地下条件的微流体系统。例如,Jimenez-Martinez 和同事介绍了关于复杂裂缝和矩阵网络中关键孔径尺度流动和传输机制的两项研究22,23.作者在储层条件下(8.3 MPa和45°C)使用微流体研究三相系统,以提高生产效率;他们评估斯科2 用于重新刺激, 其中从以前的压裂剩余的盐水是不可混杂的 Co2 和残余碳氢化合物23.油湿硅微流体器件与油-盐水-scCO的混合相关2 在增强型石油回收 (EOR) 应用中;然而,这项工作并不直接涉及骨折的孔径尺度动力学。另一个例子是 Rognmo 等人的工作, 他研究高压的升级方法, 原位 Co2 泡沫生成24.文献中大多数利用微制造的报告都涉及 CO2-EOR 和它们通常不包括重要的制造细节。据作者所知,文献中目前缺少了用于制造用于断裂地层高压装置的系统协议。

这项工作提供了一个微流体平台,能够研究scCO2泡沫结构,气泡形状,大小和分布,在存在油的层压稳定性为EOR和水力压裂和含水层补救应用。讨论了使用光学光刻和选择性激光诱导蚀刻29(SLE)的微流体器件的设计和制造。此外,本文还描述了旨在模拟断裂紧密地层中流体的传输的断裂模式。模拟路径的范围可能从简化的模式到基于断层扫描数据的复杂微裂纹,或者提供真实裂缝几何信息的其他方法。该协议描述了使用光刻、湿蚀和热粘结的玻璃微流体器件的分步制造说明。内部开发的准直紫(UV)光源用于将所需的几何图案转移到薄薄的光刻层上,最终使用湿蚀工艺将其传输到玻璃基板。作为质量保证的一部分,蚀刻图案的特点是使用共和显微镜。作为光刻/湿蚀的替代方案,采用SLE技术创建微流体器件,并介绍了平台的比较分析。流量实验的设置包括气瓶和泵、压力控制器和传感器、流体混合器和蓄能器、微流体装置、高压不锈钢支架以及高分辨率摄像机和照明系统。最后,介绍了流量实验的代表性观测样本。

Protocol

注意:此协议涉及处理高压装置、高温炉、危险化学品和紫外线。请仔细阅读所有相关材料安全数据表,并遵守化学品安全指南。在开始喷射过程之前,请检查压力测试(静液压和气动)安全准则,包括所需的培训、所有设备的安全操作、相关危险、紧急触点等。 1. 设计几何图案 设计一个光掩贴,包括几何特征和感兴趣的流动路径(图1,…

Representative Results

本节介绍从 scCO2 泡沫流穿过与微裂纹阵列相连的主裂缝的物理观测示例。通过光刻或 SLE 制造的玻璃微流体装置放置在支架内,并放置在摄像机的视野中,该摄像机具有 6000 万像素的单色全帧传感器。 图11 说明了微流体器件的制造过程及其在实验装置中的放置。 图 12 说明了在生成/隔离前20 分钟内,UV 光刻微流体器件(4 MPa 和 40°C)?…

Discussion

这项工作提出了一个与制造平台相关的协议,用于制造坚固的高压玻璃微流体器件。这项工作中提出的协议通过在手套箱内执行几个最终的制造步骤来缓解对洁净室的需要。建议使用洁净室(如果有)以尽量减少污染的可能性。此外,蚀刻机的选择应基于所需的表面粗糙度。使用HF和HCl的混合物作为蚀刻,往往减少表面粗糙度30。这项工作涉及微流体平台,使复杂流体在复杂渗透…

Declarações

The authors have nothing to disclose.

Acknowledgements

来自怀俄明大学的作者感谢支持作为非常规和紧密油层水-碳氢化合物-岩石相互作用机械控制中心的一部分,该中心是由美国能源部能源前沿研究中心资助的,能源部,能源局(BES)颁发的DE-SC0019165奖。来自堪萨斯大学的作者们感谢美国国家科学基金会EPSCoR研究基础设施改进计划:轨道-2聚焦EPSCOR协作奖(OIA-1632892)用于资助该项目。作者们还感谢怀俄明大学化学工程系的孙金迪,感谢她在仪器培训方面给予的慷慨帮助。SAA感谢来自怀俄明大学的凯尔·温克尔曼,感谢他在构建成像和紫外线支架方面的帮助。最后,但不是最不重要的,作者感谢约翰瓦瑟鲍尔从微玻璃,有限责任公司有用的讨论SLE技术。

Materials

1/4” bolts and nuts For fabrication of the metallic plates to sandwich the glass chip between them for thermal bonding
3.45 x 3.45 mm UV LED Kingbright To emitt LED light
3D measuring Laser microscope OLYMPUS LEXT OLS4000 To measure channel depths
40 mm x 40 mm x 10 mm 12V DC Cooling Fan Uxcell To cool the UV LED lights
120 mm x 38 mm 24V DC Cooling Fan Uxcell To cool the UV LED lights
5 ml (6 ml) NORM-JECT Syringe HENKE SASS WOLF Lot #16M14CB To rinse the chip before each experiment
Acetone (Certified ACS) Fisher Chemical Lot #177121 For cleaning
Acid/ corossion resistive tweezer TED PELLA To handle the glass piece in corosive solutions
Acid/solvent resistance tweezers TED PELLA, INC #53009 and #53010 To handle the glass in corrosive solutions
Alloy X AMERICAN SPECIAL METALS Heat Number: ZZ7571XG11
Ammonium hydroxide (ACS reagent) Sigma Aldrich Lot #SHBG9007V To clean the chip at the end of process
AutoCAD Autodesk, San Rafael, CA To design 2D patterns and 3D chips
BD Etchant for PSG-SiO2 systems TRANSENE Lot #028934 An improved buffered etch formulation for delineation of phosphosilica glass – SiO2 (PSG), and borosilica glass – SiO2 (BSG) systems
Blank Borofloat substrate TELIC CG-HF Upper substrate for UV etching
Borofloat substrate with metalizations TELIC PG-HF-LRC-Az1500 Lower substrate for UV etching
Capture One photo editing software Phase One To Capture/Edit/Convert the pictures taken by Phase One Camera
Capture station DT Scientific DT Versa To place of the chip in the field of view of the camera
Carbon dioxide gas (Grade E) PRAXAIR UN 1013, CAS Number 124-38-9 non-aqeous portion of foam
Chromium etchant 1020 TRANSENE Lot #025433 High-purity ceric ammonium nitrate systems for precise, clean etching of chromium and chromium oxide films.
Circulating baths with digital temperature controller PolyScience To control the brine and CO2 temperatures
CO2 Airgas 100% pure – 001013 – CAS: 124-38-9 For CO2/scCO2 injection
Computer NVIDIA Tesla K20 Graphic Card – 706 MHz Core – 5 GB GDDR5 SDRAM – PCI Express 2.0 x16 To process and visualize the images obtained via the Phase One camera
Custom made high pressure glass chip holder To tightly hold the chip and its connections for high pressure testing
Cutrain (Custom) To protect against UV/IR Radiations
Deionized water (DI) For cleaning
Digital camera with monochromatic 60 MP sensor Phase One IQ260 Visualization system
Ethanol, Anhydrous, USP Specs DECON LABORATORIES, INC. Lot #A12291505J, CAS# 64-17-5 For cleaning
Facepiece reusable respirator 3M 6502QL, Gases, Vapors, Dust, Medium To protect against volatile solution inhalation
Fused Silica (UV Grade) wafer SIEGERT WAFER UV grade Glass precursor for SLE printing
GIMP Open-source image processing software To characterize image texture and properties
Glovebox (vinyl anaerobic chamber) Coy To provide a clean, dust-free environment
Heated ultrasonic cleaning bath Fisher Scientific To accelerate the etching process
Hexamethyldisilazane (HMDS) Cleanroom® MB KMG 62115 Primer for photoresist coating
Hose (PEEK tubing) IDEX HEALTH & SCIENCE Natural 1/16" OD x .010" ID x 5ft, Part # 1531 Flow connections
Hydrochloric acid, certified ACS plus Fisher Chemical Lot # 187244 Solvent in RCA semiconductor cleaning protocol
Hydrogen Peroxide Fisher Chemical H325-500 Solvent in RCA semiconductor cleaning protocol
ImageJ NIH To characterize image texture and properties
ISCO syringe pump TELEDYNE ISCO D-SERIES (100DM, 500D) To pump the fluids
Kaiser LED light box Kaiser To illuminate the chip
Laser printing machine LightFab GmbH, Germany. FILL Glass-SLE chip fabrication
Laser safety glasses FreeMascot B07PPZHNX4 To protect against UV/IR Radiations
LED Engin 5W UV Lens LEDiL To emitt LED light
Light Fab 3D Printer (femtosecond laser) Light Fab To selectively laser Etch of fused silica
LightFab 3D printer LightFab GmbH, Germany To SLE print the fused silica chips
MATLAB MathWorks, Inc., Natick, MA To characterize image texture and properties
Metallic plates
Micro abrasive sand blasters (Problast 2) VANIMAN Problast 2 – 80007 To craete holes in cover plates
MICROPOSIT 351 developer Dow 10016652 Photoresist developer solution
Muffle furnace Thermo Scientific Thermolyne Type 1500 Thermal bonding
N2 pure research grade Airgas Research Plus – NI RP300 For drying the chips in each step
NMP semiconductor grade – 0.1μm Filtered Ultra Pure Solutions, Inc Lot #02191502T Organic solvent
Oven Gravity Convection Oven 18EG
Phase One IQ260 with an achromatic sensor Phase One IQ260 To visulize transport in microfluidic devices using an ISO 200 setting and an aperture at f/8.
Photomask Fine Line Imaging 20,320 DPI FILM Pattern of channels
Photoresist (SU-8) MICRO CHEM Product item: Y0201004000L1PE, Lot Number: 18110975 Photoresist
Polarized light microscope OLYMPUS BX51 Visual examination of micro channels
Ports (NanoPort Assembly) IDEX HEALTH & SCIENCE NanoPort Assembly Headless, 10-32 Coned, for 1/16" OD, Part # N-333 Connections to the chip
Python Python Software Foundation To characterize image texture and properties
Safety face shield Sellstrom S32251 To protect against UV/IR Radiations
Sealing film (Parafilm) Bemis Company, Inc Isolation of containers
Shutter Control Software Schneider-Kreuznach To adjust shutter settings
Smooth ceramic plates
Stirring hot plate Corning® PC-620D To heat the solutions
Sulfuric acid, ACS reagent 95.0-98.0% Sigma Aldrich Lot # SHBK0108 Solvent in RCA semiconductor cleaning protocol
Syringe pump (Standard Infuse/Withdraw PHD ULTRA) Harvard Apparatus 70-3006 To saturate the chip before each experiment
Torque wrench Snap-on TE25A-34190 To tighten the screws
UV power meter Optical Associates, Incorporated Model 308 To measure the intesity of UV light
UV power meter Optical Associates, Incorporated Model 308 To quantify the strength of UV light
UV radiation stand (LED lights) To transfer the pattern to glass (photoresist layer)
Vaccum pump WELCH VACCUM TECHNOLOGY, INC 1380 To dry the chip
Variable DC power supplies Eventek KPS305D To power the UV LED lights

Referências

  1. Hyman, J. D., et al. Understanding hydraulic fracturing: a multi-scale problem. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences A. 13 (374), 1-15 (2016).
  2. Middleton, R. S., et al. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy. 147 (1), 500-509 (2015).
  3. Hosseini, H., Tsau, J., Peltier, E., Barati, R. Lowering Fresh Water Usage in Hydraulic Fracturing by Stabilizing scCO2 Foam with Polyelectrolyte Complex Nanoparticles Prepared in High Salinity Produced Water. SPE-189555-MS. , (2018).
  4. Gregory, K. B., Vidic, R. D., Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements. 7, 181-186 (2017).
  5. Ellsworth, W. L. Injection-Induced Earthquakes. Science. 341, 1-8 (2013).
  6. Hosseini, H., et al. Experimental and Mechanistic Study of Stabilized Dry CO2 Foam Using Polyelectrolyte Complex Nanoparticles Compatible with Produced Water To Improve Hydraulic Fracturing Performance. Journal of Industrial and Engineering Chemistry Research. 58, 9431-9449 (2019).
  7. Hosseini, H., Tsau, J. S., Peltier, E., Ghahfarokhi, R. B. Highly stable scCO2-high salinity brine interface for waterless fracturing using polyelectrolyte complex nanoparticles. Abstract Paper of American Chemical Society. 256, (2018).
  8. Al-Muntasheri, G. A. Critical Review of Hydraulic-Fracturing Fluids for Moderate- to Ultralow- Permeability Formations Over the Last Decade. SPE Production & Operations, SPE-169552. 29 (04), 243-260 (2014).
  9. Tong, S., Singh, R., Mohanty, K. K. Proppant Transport in Fractures with Foam-Based Fracturing Fluids. SPE-187376-MS. , (2017).
  10. Fernø, M. A., Eide, &. #. 2. 1. 6. ;., Steinsbø, M., Langlo, S. A. W., Christophersen, A., Skibenes, A., et al. Mobility control during CO2 EOR in fractured carbonates using foam: Laboratory evaluation and numerical simulations. Journal of Petroleum Science and Engineering. 135, 442-451 (2015).
  11. Middleton, R., Viswanathan, H., Currier, R., Gupta, R. CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia. 63, 7780-7784 (2014).
  12. Guo, F., Aryana, S. A. Improved sweep efficiency due to foam flooding in a heterogeneous microfluidic device. Journal of Petroleum Science and Engineering. 164, 155-163 (2018).
  13. Nazari, N., Hosseini, H., Jyun-Syung, T., Shafer-Peltier, K., Marshall, C., Ye, Q., Ghahfarokhi, R. B. Development of Highly Stable Lamella Using Polyelectrolyte Complex Nanoparticles: An Environmentally Friendly scCO2 Foam Injection Method for CO2 Utilization Using EOR. Fuel. 261, 11636 (2020).
  14. Nguyen, V. H., Kang, C., Roh, C., Shim, J. J. Supercritical CO2 -Mediated Synthesis of CNT@Co3O4 Nanocomposite and Its Application for Energy Storage. Industrial and Engineering Chemistry Research. 55, 7338-7343 (2016).
  15. Guo, F., Aryana, S. A., Wang, Y., Mclaughlin, J. F., Coddington, K. Enhancement of storage capacity of CO2 in megaporous saline aquifers using nanoparticle-stabilized CO2 foam. International Journal of Greenhouse Gas Control. 87, 134-141 (2019).
  16. Guo, F., Aryana, S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel. 186, 430-442 (2016).
  17. Guo, F., He, J., Johnson, A., Aryana, S. A. Stabilization of CO2 foam using by-product fly ash and recyclable iron oxide nanoparticles to improve carbon utilization in EOR processes. Sustainable Energy and Fuels. 1, 814-822 (2017).
  18. Wang, Y., Shahvali, M. Discrete fracture modeling using Centroidal Voronoi grid for simulation of shale gas plays with coupled nonlinear physics. Fuel. 163, 65-73 (2016).
  19. Tiggelaar, R. M., Benito-Lopez, F., Hermes, D. C., Rathgen, H., Egberink, R. J. M., Mugele, F. G., Reinhoudt, N. D., van den Berg, A., Verboom, W., Gardeniers, H. J. G. E. Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chemical Engineering Journal. 131, 163-170 (2007).
  20. Marre, S., Adamo, A., Basak, S., Aymonier, C., Jensen, K. F. Design and Packaging of Microreactors for High Pressure and High Temperature Applications. Industrial and Engineering Chemistry Research. 49, 11310-11320 (2010).
  21. Paydar, O. H., Paredes, C. N., Hwang, Y., Paz, J., Shah, N. B., Candler, R. N. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sensors Actuators A: Physical. 205, 199-203 (2014).
  22. Jiménez-Martínez, J., et al. Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions. Geophysical Research Letters. 42, 5316-5324 (2015).
  23. Jiménez-martínez, J., Porter, M. L., Hyman, J. D., Carey, J. W., Viswanathan, H. S. Mixing in a three-phase system: Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letters. 43, 196-205 (2016).
  24. Rognmo, A. U., Fredriksen, S. B., Alcorn, Z. P. Pore-to-Core EOR Upscaling for CO2 Foam for CCUS. SPE Journal. 24, 1-11 (2019).
  25. Erickstad, M., Gutierrez, E., Groisman, A. A low-cost low-maintenance ultraviolet lithography light source based on light-emitting diodes. Lab on a Chip. 15, 57-61 (2015).
  26. Guo, F., Aryana, S. A. An Experimental Investigation of Flow Regimes in Imbibition and Drainage Using a Microfluidic Platform. Energies. 12 (7), 1-13 (2019).
  27. Burshtein, N., Chan, S. T., Toda-peters, K., Shen, A. Q., Haward, S. J. 3D-printed glass microfluidics for fluid dynamics and rheology. Current Opinion in Colloid & Interface Science. 43, 1-14 (2019).
  28. Wang, Y., Aryana, S. A., Banerjee, S., Barati, R., Patil, S. Creation of Saturation Maps from Two-Phase Flow Experiments in Microfluidic Devices. Advances in Petroleum Engineering and Petroleum Geochemistry. Advances in Science, Technology & Innovation. , 77-80 (2019).
  29. Hermans, M., Gottmann, J., Riedel, F. Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH. Journal of Laser Micro/Nanoengineering. 9, 126-131 (2014).
  30. Iliescu, C., Jing, J., Tay, F. E. H., Miao, J., Sun, T. Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. Surface & Coatings Technology. 198, 314-318 (2005).

Play Video

Citar este artigo
Hosseini, H., Guo, F., Barati Ghahfarokhi, R., Aryana, S. A. Microfluidic Fabrication Techniques for High-Pressure Testing of Microscale Supercritical CO2 Foam Transport in Fractured Unconventional Reservoirs. J. Vis. Exp. (161), e61369, doi:10.3791/61369 (2020).

View Video