Summary

表征形态变化的议定书<em>艰难梭菌</em>应对抗生素治疗

Published: May 25, 2017
doi:

Summary

Antibiotic efficacy is most commonly determined by conducting killing kinetic studies and measuring colony forming units (CFUs). By integrating scanning electron microscopy (SEM) with these standard methods, we can distinguish the pharmacological effects of treatment between different antibiotics.

Abstract

用针对厌氧菌的新药开发评估抗生素的作用是困难和技术上的要求。为了获得可能的MOA的了解,可以使用扫描电子显微镜(SEM)显现与抗生素暴露相关的形态学变化。将SEM成像与传统杀伤曲线整合可能会提高我们对药物作用的深入了解,推动药物开发过程。为了测试这个前提,用已知但不同的MOA(万古霉素和甲硝唑)的药物进行杀伤曲线和SEM研究。 艰难梭菌细胞(R20291)在有或没有抗生素存在下长达48小时生长。在48小时的间隔期间,在多个时间点收集细胞以确定抗生素的功效并在SEM上成像。与以前的报道一致,万古霉素和甲硝唑在通过菌落形成单位(CFU)计算的24小时治疗后具有显着的杀菌活性婷。使用SEM成像,我们确定甲硝唑对细胞长度有显着影响(与对照组和万古霉素相比,每种抗生素的细胞长度减少50%, P <0.05)。虽然以前没有以这种方式记录对药物治疗的表型反应,但是它们与药物的MOA一致,证明了成像和测量的通用性和可靠性以及该技术对其他实验化合物的应用。

Introduction

艰难梭菌是一种革兰氏阳性,形成细菌的细菌,每年在美国造成大约50万感染,被疾病控制和预防中心(CDC)认定为威胁级紧急病原体,这是最高的风险。 1过去十年来,针对艰难梭菌活性的抗微生物药物开展了相当大的药物开发2,3 体外研究是药物开发过程的必要组成部分。 4传统上, 体外易感性和时间杀死研究用于验证未来动物和其他体内研究。

虽然这些方法在评估杀伤作用方面起着重要作用,但它们不能捕获细胞对药理学治疗的表型反应。通过纳入扫描电子显微镜(SEM)与标准d杀死动力学研究,可以更全面地表征抗生素的直接作用。 5,6,7这里,我们提供一种方法,其中SEM用作描述抗生素治疗功效的手段。

Protocol

1.从不同的环境或临床来源分离艰难梭菌环境隔离物:使用预先消毒的棉布(轻轻地用0.85%NaCl浸湿),拭拭任何感兴趣区域的表面(地板,门,手柄,搁板等 )。 8确保使用无菌手套,并在完成后将拭子放在灭菌管中。 临床分离物(粪便):使用接种环将头10至100mg临床粪便样品置于头孢西丁 – 环丝氨酸 – 果糖琼脂(CCFA)上,并在严格厌氧条件下孵育48-72?…

Representative Results

艰难梭菌是孢子形成细菌,因此在任何功能分析之前,必须确定营养和孢子细胞之间的形态差异。 图1显示了在生长曲线和孢子细胞的指数期捕获的营养细胞的代表性图像。如图所示,营养细胞是长而光滑的棒状结构,而孢子是具有粗糙外观的小的椭圆形结构。在功能上,营养细胞生长和分裂迅速,并通过分泌毒素来造成艰难梭菌感染的毒力,而孢子?…

Discussion

目前的研究目的是创建一种高通量的方法来分离艰难梭菌 ,并使用扫描电子显微镜(SEM)作为抗菌药物药理作用的更全面表征的手段。使用本文概述的方案,我们已经证明,成像细胞对抗生素治疗的表型反应可以揭示药物的药理作用的洞察力。总的来说,该方案的成像部分在收集细胞后的持续时间大约需要2小时,但比单独的典型的杀伤动力学研究更为歧视。在学习使用SEM的同时,技术上?…

Declarações

The authors have nothing to disclose.

Acknowledgements

These experiments have been supported by research grants from Merck and Co. and Summit, PLC.

Materials

cotton gauze  Caring PRM21408C
NaCl Macron 7532
50mL tubes Falcon 352098
Brain Heart Infusion (BHI)  Criterion C5141
L-cysteine Alfa Aesar A10389
yeast extract Criterion C741
sodium taurocholate Alfa Aesar A18346
anaerobic chamber Coy vinyl anaerobic chamber
cycloserinecefoxitin fructose agar (CCFA) plates Anaerobe systems AS-213
blood agar plates Hardy diagnostics A-10
latex agglutination reagent Oxoid DR1107A C. diff test kit
microcentrifuge tubes Eppendorf 222363204
PBS Gibco 10010-031
4% paraformaldehyde Fisher Scientific 50-259-98
microscope slides J. Melvin freed brand 7525M 75x25mm
flow hood Labconco Class II type A2  biosafety cabinet
desk sputtering machine Denton Vacuum Desk II
tape Plastic Core 05072-AB SPI Double Sided Adhesive Carbon Tape
gold Denton Vacuum TAR001-0158 2.375” Diameter x .002” Thick Gold foil
scanning electron microscope FEI XL-30

Referências

  1. Lessa, F. C., et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 372 (9), 825-834 (2015).
  2. Vickers, R. J., et al. Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents. 48 (2), 137-143 (2016).
  3. Shah, D., et al. Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Expert Rev Anti Infect Ther. 8 (5), 555-564 (2010).
  4. Ambrose, P. G., et al. New EMA guideline for antimicrobial development. Lancet Infect Dis. 12 (4), 265-266 (2012).
  5. Bassères, E., et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 71 (5), 1245-1251 (2016).
  6. Endres, B. T., et al. A novel method for imaging the pharmacological effects of antibiotic treatment on Clostridium difficile. Anaerobe. 40, 10-14 (2016).
  7. Endres, B. T., et al. Evaluating the Effects of Surotomycin Treatment on Clostridium difficile Toxin A and B Production, Immune Response, and Morphological Changes. Antimicrob Agents Chemother. 60 (6), 3519-3523 (2016).
  8. Alam, M. J., Anu, A., Walk, S. T., Garey, K. W. Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe. 27, 31-33 (2014).
  9. Aitken, S. L., et al. In the Endemic Setting, Clostridium difficile Ribotype 027 Is Virulent But Not Hypervirulent. Infect Control Hosp Epidemiol. , 1-6 (2015).
  10. Basseres, E., et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 71 (5), 1245-1251 (2016).
  11. Walters, B. A., Roberts, R., Stafford, R., Seneviratne, E. Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut. 24 (3), 206-212 (1983).
  12. Chilton, C. H., et al. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery. J Antimicrob Chemother. 68 (9), 2078-2082 (2013).
  13. Ofosu, A. Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol. 29 (2), 147-154 (2016).
  14. McDonald, L. C., et al. An epidemic, toxin gene-variant strain of Clostridium difficile. New Eng J Med. 353 (23), 2433-2441 (2005).

Play Video

Citar este artigo
Endres, B., Bassères, E., Rashid, T., Chang, L., Alam, M. J., Garey, K. W. A Protocol to Characterize the Morphological Changes of Clostridium difficile in Response to Antibiotic Treatment. J. Vis. Exp. (123), e55383, doi:10.3791/55383 (2017).

View Video