JoVE 과학 교육
Earth Science
This content is Free Access.
JoVE 과학 교육 Earth Science
Physical Properties Of Minerals I: Crystals and Cleavage
  • 00:00개요
  • 01:03Principles of Crystal Cleavage
  • 03:32Observing and Analyzing Crystal Form
  • 04:51Observing and Analyzing Cleavage
  • 06:04Applications
  • 07:16Summary

광물의 물리적 특성 I: 결정 및 벽개

English

소셜에 공유하기

개요

출처: 앨런 레스터 연구소 – 콜로라도 볼더 대학교

미네랄의 물리적 특성은 색상, 줄무늬, 자기 특성, 경도, 결정 성장 형태 및 결정 분열을 포함하여 다양한 측정 가능하고 식별 가능한 특성을 포함합니다. 이러한 각 특성은 광물에 특화되며, 특정 광물의 화학 적 구성 및 원자 구조와 근본적으로 관련이 있습니다.

이 실험은 결정 격자, 결정 성장 형태 및 결정 분열 내의 단위 세포라고 불리는 기본 구조 적 원자 그룹화의 대칭 반복에서 주로 줄기두 가지 특성을 검사합니다.

결정 성장 형태는 원자 수준의 대칭의 거시적 발현이며, 성장하는 결정 격자에 단위 세포(미네랄의 분자 빌딩 블록)를 추가하는 자연적인 성장 과정에 의해 생성된다. 빠른 단위 세포 추가 영역은 평면 표면, 크리스탈의 면 사이의 가장자리가됩니다.

바위는 미네랄 곡물의 집합임을 인식하는 것이 중요합니다. 대부분의 바위는 폴리 미네랄 (여러 종류의 미네랄 곡물)이지만 일부는 효과적으로 단미네랄 (단일 미네랄로 구성됨)입니다. 바위는 미네랄의 조합이기 때문에 바위는 결정형태를 갖는 것으로 불리지 않습니다. 어떤 경우에는 지질학자들은 바위를 일반적인 분열이 있는 것으로 지칭하지만, 여기서이 용어는 단순히 반복적인 파괴 표면을 지칭하는 데 사용되며 원자 결정 구조의 반영이 아닙니다. 따라서 일반적으로 결정 형태와 결정 분열라는 용어는 암석 샘플이 아닌 미네랄 샘플을 참조하여 사용됩니다.

Principles

모든 미네랄은 물리적 특성을 가지고 있지만 특성과 관련된 구체적이고 쉽게 인식 할 수있는 특징이 항상 개별 결정으로 표현되는 것은 아닙니다. 예를 들어, 석영 결정은 특유의 육각형 모양을 가지고 있지만, 다른 미네랄이 자연적인 성장 형태를 차단하거나 방해하는 환경에서 결정 성장이 발생하면 육각형 모양이 형성되지 않습니다. 따라서 모든 샘플이 이러한 주요 특징을 보여주는 것은 아니기 때문에 결정 성장 또는 결정 분열 분석을 위해 적합한 샘플 그룹을 신중하게 선택하는 것이 중요합니다.

또한, 결정 분열은 비교적 테스트하기 쉽지만- 망치로 시료를 파괴함으로써 – 다른 광물은 다양한 분열 품질을 나타내며, 이러한 플라너 표면은 비정형 및 거칠기(“가난한 분열”이라고 불규칙하거나 매우 매끄러운 것)(“좋은” 또는 “우수 분열”이라고 불려질 수 있음). 어떤 경우에는(예를 들어 석영), 결정적 결합 강도는 모든 방향에서 균일하며, 이는 인식 할 수있는 분열 평면의 부족으로 미네랄을 초래한다.

Procedure

1. 광물 샘플 그룹 설립 석영, halite, 방해, 가넷, 비오테이트 및/또는 muscovite : 가능한 한 많은 다음을 포함한다. 일부는 크리스탈 성장 기능 및 크리스탈 분열 기능에 대 한 다른 선택. 2. 크리스탈 형태를 관찰하고 분석 샘플을 관측 표면에 놓습니다. 모든 면을 관찰하기 위해 회전합니다. 크리스탈 면, 크리스탈 엣지(얼굴이 만나는 선), 크리스탈 정점(가장자리가 만나는 지점)을 찾습니다. 가능한 경우 고니오미터를 사용하여 얼굴 간 각도를 측정합니다. 이것은 단순히 특정 크리스탈 얼굴에 고니오미터의 한쪽을 놓고, 인접한 얼굴에 곤니오미터의 다른 면을 놓은 다음 각도를 읽는 것으로 수행됩니다. 특징적인 결정성 폴리헤드라 세트와 비교하십시오. 반복 단계 2.1 – 2.4 석영 (주 육각형 대피라미드 형태(그림 1)),방해 (노트 스케일노헤드론 형태(그림 2)),halite (노트 입방 결정 형태(도 3)),가넷 (노트 도데카헤드론 형태(그림 4)),및 비오티트 (참고 pseudo-hexagoal 형태)에 대한2.1) 그림 1. 육각형 대피라미드 형태를 표시하는 석영. 그림 2. 스케일노헤드론 형태를 표시하는 석미. 여러 결정면이 교차하여 결정 가장자리를 형성하고 가장자리의 조합은 “정점”이라고 하는 점을 형성합니다. 대칭 결정 성장 형태는 결정 격자 내의 기본 원자 구조 (단위 세포)의 반복에 의해 생성됩니다. 이 경우, 방해미 결정 성장은 스케일노헤드론으로 알려진 특정 폴리에드론을 생성한다. 그림 3. 할라이트는 입방 크리스탈 형태를 표시합니다. 그림 4. 도데카히드론 형태를 표시하는 가넷. 그림 5. 의사 육각형을 표시하는 비오티트. 3. 분열 관찰 및 분석 눈 보호에 넣어. 부서지는 표면에 석영 조각을 놓습니다. 망치를 사용하여 석영 조각을 반으로 부수습니다. 손 렌즈를 사용하여 절단 표면에 대한 석영의 깨진 조각을 관찰합니다. 석영에는 아무 것도 없습니다. 석영은 골절을 부출하지만 잘 정의된 골짜기표면(도 6)을나타낸다. 이것은 석영 결정 격자 (실리카 테트라 헤드랄이라고 불리는 SiO4 단)의 단위 세포가 모든 방향에서 비교적 동일한 결합 강도를 가지고 있다는 사실의 결과입니다. 이러한 결합 강도의 균일성은 바람직한 파손 평면이 없는 크리스탈을 생성합니다. 반복 단계 3.2 – 3.4 방해기 (마름모꼴 분열(그림 7)을표시해야한다), halite (입방 분열(그림 8)을표시해야한다), 비오타이트, 및 / 또는 muscovite (각 디스플레이 평면 골짜기(도 9). 손 렌즈를 사용하여 다양한 골짜기 특성을 평가합니다. 분열은 다양한 수준에서 발생할 수 있습니다. 특정 방향에서 결합 강도에 극적인 차이가 있을 때, 예를 들어, 예를 들어, SiO4 군의 시트 사이로, 이러한 시트 사이에 거의 완벽한 분열이 생성된다. 위에서 언급 했듯이 석영은 거의 총 분열부족을 나타낸다. 이러한 극단 (완벽한 분열과 분열의 부족) 사이에, 좋은 분열(예를 들어, feldspar) 및 가난한 분열 (수륙 활공 결정에 특정 얼굴)이 미네랄이 있습니다. 그림 6. 분열 표면없이, conchoidal 골절을 표시 석영. 그림 7. 조개 골짜기 분열을 표시하는 석미. 대칭 파괴 및 골절 표면은 결정 격자 내의 원자 결합에서 상대적 약점의 영역에 의해 생성됩니다. 조미석 분열은 마름모꼴로 알려진 특정 다각형으로 초래한다. 그림 8. 할라이트는 입방 분열을 표시합니다. 그림 9. 비염은 평면 골짜기를 표시합니다.

Applications and Summary

Historically, evaluating the physical properties of minerals has been a key first step in mineral identification. Even today, when lacking microscopic and modern analytical instrumentation (e.g. petrographic microscopy, x-ray diffraction, x-ray fluorescence, and electron microprobe techniques), observed physical properties are still quite useful as diagnostic tools for mineral identification. This is particularly the case in field geologic studies.

Evaluating and observing the physical properties of minerals is an excellent means to demonstrate the critical dependence of macroscopic features on atomic-level structure and arrangement.

The key physical properties of minerals are not always expressed in specific samples. Therefore, actually being able to recognize and use these properties as diagnostic tools requires a combination of science, experience, and craft. Often, the geologist must utilize a hand lens to evaluate relatively small mineral crystals or grains within the matrix of a larger rock. In such cases, it can become a distinct challenge to identify the useful aspects of crystal form and crystal cleavage.

In an academic or teaching setting, the evaluation of minerals via hand sample analysis is an exercise that demonstrates how repetitive patterns and characteristics are imposed by the physical chemistry of natural materials. In other words, for any specific mineral, there are certain crystallographic features (e.g. crystal morphology) and physical properties (e.g. color, hardness, streak) that are imposed by chemical composition and atomic structure.

In the realm of mineral resources and exploration geology, the identification of minerals via hand sample is a key component of fieldwork, aimed at locating potential ores and economically useful deposits. For example, the identification of various metal sulfides (pyrite, sphalerite, galena) in association with hydrothermal iron oxy-hydroxides (hematite, goethite, limonite) can be indicative of potential Au- and Ag-rich veins and regions.

In the context of historical geology (deciphering the deep temporal history of a region), mineral identification can set the stage for interpretations of ancient conditions. For example, certain metamorphic minerals (e.g. the Al2SiO5 polymorphs, kyanite, andalusite, and sillimanite) are markers of particular pressure and temperature conditions in the ancient crust.

내레이션 대본

Minerals are inorganic substances found in the Earth, with unique properties that aid in identification and analysis. 

Many minerals exhibit crystalline structure. These crystalline materials have highly ordered atomic arrangements, made up of repeating atomic groupings, called unit cells. Because unit cells are identical within a crystal, they are responsible for the symmetry of the crystal on the micro- and macro-scale.

This symmetry causes mineral crystals to break, or cleave, in a predictable way. Cleavage is the tendency of a crystal to break along weak structural planes. Thus, the way a mineral cleaves provides insight into its crystal structure. 

This video will demonstrate the analysis of macro-scale mineral crystal forms by breaking mineral samples and observing their cleavage. 

Crystalline solids contain atoms organized in a repeated pattern, whereas amorphous solids have no order. For example, carbon can be found in many forms. The atoms in amorphous carbon are randomly organized, whereas the atoms in diamond are arranged in an ordered crystal.

A crystal is an array of repeating, identical unit cells, which are defined by the length of the unit cell edges and the angles between them. These repeated structures extend infinitely in three spatial directions, and define the uniformity and properties of the crystal.

There are seven basic unit cells. The simplest unit cell, the cube, has equal edge lengths, and an atom at each corner. Variations include tetragonal and orthorhombic, which possess different edge lengths. 

Rhombohedral crystal structures possess similar parallel face geometry without right angles. Monoclinic and triclinic are similar in shape, but with varied angles and edge lengths. Finally, the hexagonal structure is composed of two parallel hexagonal faces, with six rectangular faces. 

Variations in these structures arise when additional atoms are contained in the crystal face, called face-centered, or in the crystal body, called body centered. 

When crystals are broken, they tend to cleave along structurally weak crystal planes. The cleavage quality depends on the strength of the bonds in and across the plane. Good cleavage occurs when the strength of the bonds within the place are stronger than those across the plane. Poor cleavage can occur when the bond strength is strong across the crystal plane. Crystals may cleave in one direction, called basal cleavage, resulting in two cleaved faces. This results from strong atomic bonds within the plane, but weak bonds between the planes.

Similarly, crystals may cleave in two directions, due to two weak planes, resulting in four cleaved faces and two fractured faces. Cubic and rhombohedral forms result from cleavage in three directions. Octahedral and dodecahedral forms arise from four and six fracture planes, respectively.

Some minerals don’t cleave along a crystal plane at all, due to strong bonds in all directions, and instead result in irregular fracture.

Now that we’ve covered the basics of crystal structure, and the different types of crystal cleavage, let’s look at these properties in real mineral samples. 

To analyze crystal forms, first collect a group of mineral samples, such as quartz, halite, calcite, garnet, biotite, and muscovite.

Place the sample on the observation surface. Rotate the sample in order to observe all sides. Look for crystal faces, crystal edges, and crystal vertices.

Where possible, measure the interfacial angles using a goniometer. To do so, lay one side of the goniometer on a particular crystal face, and the other side of the goniometer on an adjoining face. Then read the angle.

Compare the observations to the set of characteristic crystalline polyhedra. Repeat these steps for other minerals, and note the differences.

Quartz samples have a hexagonal dipyramidal crystal form, as indicated by the 6 sides.

The calcite material, exhibits scalenohedron form, as shown by the 8 faces of the twinned pyramid structure.

Halite, shows characteristic cubic structure, with 90° angles.

Garnet has angled surfaces with 12 sides, indicative of its dodecahedron form.

Finally, biotite can show an apparent hexagonal form. 

Next, to observe crystal cleavage, first put on eye protection.

Place a piece of quartz on the breaking surface. Using a hammer, break the piece of quartz. Using a hand lens, observe the broken piece of quartz for cleavage surfaces. Notice that quartz has none.

The unit cells in the quartz crystal lattice have comparably equal bond strengths in all directions, resulting in a crystal with no preferred breaking planes, called conchoidal fracture.

Next, repeat this breaking step for other specimens. Use a hand lens to evaluate different cleavage qualities.

When there is a dramatic difference in bond strengths in a particular orientation, such as between sheets of silicate groupings in the case of mica, a nearly perfect cleavage is generated between these sheets, called basal cleavage.

Biotite and muscovite each display basal cleavage, with a single break plane.

Halite displays cubic cleavage, resulting from three cleavage planes at 90°.

Calcite displays rhombohedral cleavage, resulting from three cleavage planes at 120 and 60°.

The analysis of crystal structure is important to understanding the types of minerals found in the field.

The quantitative analysis of crystal structure can be performed using X-ray diffraction, or XRD.

In this example, the crystal structure of an iron oxide was synthesized from a mixture of hematite and iron at high temperature and pressure in a diamond anvil cell. The XRD scattering pattern was analyzed throughout the reaction to determine the crystal structure.

The results showed smooth or spotty Debye rings, which indicate crystallinity. The location of each ring elucidates the crystal structure, as each ring corresponds to a crystal plane.

Due to its planar cleavage property, and therefore atomically flat surface, mica is frequently used as a substrate for small molecule imaging.

In this example, mica was used as a substrate for the imaging of photoreceptor molecules using atomic force microscopy, or AFM. The protein sample was adsorbed to a freshly cleaved mica sheet, and then rinsed with buffer.

The sample was then imaged using a fluid cell. The mica substrate enabled high resolution imaging of the protein sample due to its atomically flat surface.

You’ve just watched JoVE’s introduction to physical properties of minerals. You should now understand the basics of crystal unit cells, and how to determine crystal cleavage planes. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Physical Properties Of Minerals I: Crystals and Cleavage. JoVE, Cambridge, MA, (2023).