Summary

培养和遗传操纵昆虫致病线虫

Published: March 31, 2022
doi:

Summary

昆虫致病线虫与细菌共生,它们通过破坏其先天免疫系统成功地感染昆虫。为了促进线虫感染的遗传基础研究,描述了维持和遗传操纵昆虫致病线虫的方法。

Abstract

异形体炎施泰纳尼马属的昆虫致病性线虫是生活在土壤中的昆虫的专性寄生虫。它们生命周期的主要特征是分别与细菌光环菌和异蕊花虫的互利性关联。线虫寄生虫能够定位并进入合适的昆虫宿主,破坏昆虫的免疫反应,并有效地繁殖,产生下一代将积极捕食新的昆虫猎物进行感染。由于其生命周期的特性,昆虫病原线虫是流行的生物控制剂,与杀虫剂结合使用以控制破坏性的农业害虫。同时,这些寄生线虫代表了分析线虫致病性和宿主抗线虫反应的研究工具。这项研究得到了最近开发的遗传技术和转录组学方法的帮助,这些方法用于了解线虫分泌分子在感染过程中的作用。这里提供了维持昆虫致病性线虫和使用基因敲低程序的详细方案。这些方法进一步促进了致虫性线虫感染因子的功能表征。

Introduction

在过去几年中,对昆虫致病线虫(EPN)的研究已经加强,这主要是由于这些寄生虫在综合虫害管理策略中的实用性以及它们参与基础生物医学研究12。最近的研究已经建立了EPN作为模式生物,在其中检查在感染过程的不同阶段激活的线虫遗传成分。这些信息提供了关于寄生虫分泌的分子的性质和数量的关键线索,这些分子改变了宿主的生理学并破坏了昆虫先天免疫反应的稳定性34。同时,这些知识通常由昆虫宿主免疫信号通路的类型及其调节功能以限制病原体进入和传播的新细节来补充56。了解这些过程对于设想EPN与其昆虫宿主之间动态相互作用的双方至关重要。更好地理解EPN-昆虫宿主关系无疑将促进与哺乳动物寄生线虫的类似研究,这可能导致识别和表征干扰人体免疫系统的感染因素。

EPN线虫 异性带炎 属和 斯坦尼玛 属可以感染多种昆虫,其生物学以前已被深入研究。两种线虫寄生虫的繁殖方式不同, 异性粒体炎 是自我受精的, 斯坦纳尼马 经历两栖生殖,尽管最近雌 雄同体 被证明通过雌雄同体的自受精或通过单性生殖789来繁殖。 异形体炎斯坦纳尼马 线虫之间的另一个区别是它们与两个不同的革兰氏阴性细菌属,分别是 光环菌异桔梗,它们都是昆虫的有效病原体。这些细菌在EPN的自由生活和非进食感染性幼年(IJ)阶段被发现,它们检测易感宿主,进入昆虫血液,在那里它们释放快速复制的相关细菌,并定植昆虫组织。EPN及其细菌都产生毒力因子,解除昆虫防御并损害体内平衡。在昆虫死亡后,线虫IJ发育成成年EPN并完成其生命周期。为了应对食物匮乏和昆虫尸体内的过度拥挤而形成的一个新的IJ队列最终出现在土壤中,以寻找合适的宿主9101112

这里描述了用于维持,扩增和遗传操纵EPN线虫的有效方案。特别是,该协议概述了共生 细菌杆菌卡波囊 链球菌IJ的复制,轴烯线虫IJ的产生,用于显微注射的 细菌 雌雄同体的产生,dsRNA的制备以及显微注射技术。这些方法对于了解线虫致病性和宿主抗线虫免疫的分子基础至关重要。

Protocol

1.共生线虫感染性幼体的产生 用一张滤纸盖住培养皿(10厘米),加入约10-15 个梅氏 菌幼虫(图1A)。 使用移液管,将每10μL悬浮液中含有约25-50 IJs的2mL水分配到蜡虫上。将培养皿在室温下储存在柜中。 根据滤纸的水分,每2天加入1-2毫升水。感染IJ的蜡虫通常会在48小时内死亡。 在蜡虫感染IJ8 后约10天准备?…

Representative Results

为了评估经过斧化的 细菌 线虫的状态,确定了 IJs 中是否存在发光假单胞菌菌落。为此,收集了先前在PBS中表面灭菌和均质化的约500 IJs颗粒。阳性对照处理包括来自含有共生发光假单胞菌的线虫培养物的约500 IJs的 沉淀。将斧化和阳性对照线虫的颗粒在1x PBS中均质化。将匀浆物移液到琼脂上并扩散以促进单个菌落的生长。将琼脂平板在28°C下孵育24小时。第二天,观察到 发…

Discussion

了解昆虫致病性线虫感染和昆虫抗线虫免疫的分子基础需要将寄生虫与互助相关的细菌131516分离。致虫性线虫 细菌嗜血 杆菌和 卡波囊 虫 分别与革兰氏阴性菌 发光 假单胞菌和 嗜线虫X.生活在一起,17.这两种细菌物种先前已被证明可以通过靶向昆虫组织并在感染期间抵消先天?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢乔治华盛顿大学生物科学系的成员对手稿的批判性阅读。所有图形图形都是使用生物转换器制作的。研究领域:爱德华王子岛、金马龙和道琼斯大学。实验室得到了乔治华盛顿大学和哥伦比亚艺术与科学学院的支持,促进基金和跨学科研究基金。

Materials

Agarose VWR 97062-244
Ambion Megascript T7 Kit Thermo Fisher Scientific AM1333
Ampicillin Fisher Scientific 611770250
Cell culture flask T25 Fisher Scientific 156367
Cell culture flask T75 Fisher Scientific 156499
ChoiceTaq Mastermix Denville Scientific C775Y42
Corn oil VWR 470200-112
Corn syrup MP Biomedicals/VWR IC10141301
Culture tube 10 mL Fisher Scientific 14-959-14
Eppendorf Femtotips Microloader Tips Eppendorf E5242956003
Ethanol Millipore-Sigma E7023
Falcon tube 50 mL Fisher Scientific 14-432-22
Femtojet Microinjector Eppendorf 5252000021
Filter paper VWR 28320-100
Galleria mellonella waxorms Petco
Glass coverslip Fisher Scientific 12-553-464 50 x 24 mm
Halocarbon Oil 700 Sigma H8898
Inoculating loop VWR 12000-806
Kanamycin VWR 97062-956
Kwik-Fil Borosilicate Glass Capillaries World Precision Instruments 1B100F-3 1.0 mm
LB Agar Fisher Scientific BP1425-500 LB agar miller powder 500 g
LB Broth Fisher Scientific BP1426-500 LB broth miller powder 500 g
Leica DM IRB Inverted Research Microscope Microscope Central
MacConkey medium Millipore-Sigma M7408-250G
MEGAclear Transcription Clean-Up Kit Thermo Fisher Scientific AM1908
Microcentrifuge tube VWR 76332-064 1.5 ml
NanoDrop 2000 Spectrophotometer Thermo Fisher Scientific ND-2000
Needle syringe VWR BD305155 22G
Nutrient broth Millipore-Sigma 70122-100G
Parafilm VWR 52858-076
Partitioned Petri dish VWR 490005-212
PBS VWR 97062-732 Buffer PBS tablets biotech grade 200 tab
PCR primers Azenta
Pestle Millipore-Sigma BAF199230001 Bel-Art Disposable Pestle
Petri dish 6 cm VWR 25384-092 60 x 15 mm
Petri dish 10 mm VWR 10799-192 35 x 10 mm
Proteose Peptone #3 Thermo Fisher Scientific 211693
Yeast extract Millipore-Sigma Y1625

References

  1. Lacey, L. A., et al. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology. 132, 1-41 (2015).
  2. Ozakman, Y., Eleftherianos, I. Nematode infection and antinematode immunity in Drosophila. Trends in Parasitology. 37 (11), 1002-1013 (2021).
  3. Kenney, E., Hawdon, J. M., O’Halloran, D. M., Eleftherianos, I. Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. International Journal of Parasitology. 51 (5), 321-325 (2021).
  4. Bobardt, S. D., Dillman, A. R., Nair, M. G. The two faces of nematode infection: Virulence and immunomodulatory molecules from nematode parasites of mammals, insects and plants. Frontiers in Microbiology. 11, 2983 (2020).
  5. Castillo, J. C., Reynolds, S. E., Eleftherianos, I. Insect immune responses to nematode parasites. Trends in Parasitology. 27 (12), 537-547 (2011).
  6. Eleftherianos, I., Heryanto, C. Transcriptomic insights into the insect immune response to nematode infection. Genes. 12 (2), 202 (2021).
  7. Ciche, T. The biology and genome of Heterorhabditis bacteriophora. WormBook. , 1-9 (2007).
  8. Stock, S. P. Partners in crime: symbiont-assisted resource acquisition in Steinernema entomopathogenic nematodes. Current Opinion in Insect Science. 32, 22-27 (2019).
  9. Cao, M., Schwartz, H. T., Tan, C. -. H., Sternberg, P. W. The entomopathogenic nematode Steinernema hermaphroditum is a self-fertilizing hermaphrodite and a genetically tractable system for the study of parasitic and mutualistic symbiosis. 유전학. 220 (1), (2021).
  10. Goodrich-Blair, H., Clarke, D. J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Molecular Microbiology. 64 (2), 260-268 (2007).
  11. Abd-Elgawad, M. M. M. Photorhabdus spp.: An overview of the beneficial aspects of mutualistic bacteria of insecticidal nematodes. Plants. 10 (8), 1660 (2021).
  12. Dreyer, J., Malan, A. P., Dicks, L. M. T. Bacteria of the genus Xenorhabdus, a novel source of bioactive compounds. Frontiers in Microbiology. 9, 3177 (2018).
  13. Hallem, E. A., Rengarajan, M., Ciche, T. A., Sternberg, P. W. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Current Biology. 17 (10), 898-904 (2007).
  14. Castillo, J. C., Shokal, U., Eleftherianos, I. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence. 3 (3), 339-347 (2012).
  15. Castillo, J. C., Shokal, U., Eleftherianos, I. Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. Journal of Insect Physiology. 59 (2), 179-185 (2013).
  16. Eleftherianos, I., Joyce, S., Ffrench-Constant, R. H., Clarke, D. J., Reynolds, S. E. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology. 137 (11), 1695-1706 (2010).
  17. Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lerelcus, D., Givaudan, A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology. 15 (3), 220-231 (2012).
  18. Waterfield, N. R., Ciche, T., Clarke, D. Photorhabdus and a host of hosts. Annual Review of Microbiology. 63, 557-574 (2009).
  19. Ozakman, Y., Eleftherianos, I. Immune interactions between Drosophila and the pathogen Xenorhabdus. Microbiological Research. 240, 126568 (2020).
  20. Yadav, S., Shokal, U., Forst, S., Eleftherianos, I. An improved method for generating axenic entomopathogenic nematodes. BMC Research Notes. 8 (1), 1-6 (2015).
  21. Mitani, D. K., Kaya, H. K., Goodrich-Blair, H. Comparative study of the entomopathogenic nematode, Steinernema carpocapsae, reared on mutant and wild-type Xenorhabdus nematophila. Biological Control. 29 (3), 382-391 (2004).
  22. McMullen, J. G., Stock, S. P. In vivo and in vitro rearing of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae). Journal of Visualized Experiments. (91), e52096 (2014).

Play Video

Cite This Article
Heryanto, C., Ratnappan, R., O’Halloran, D. M., Hawdon, J. M., Eleftherianos, I. Culturing and Genetically Manipulating Entomopathogenic Nematodes. J. Vis. Exp. (181), e63885, doi:10.3791/63885 (2022).

View Video