Summary

单纯疱疹病毒的扁平化

Published: November 05, 2021
doi:

Summary

Plaquing是一种用于量化人群中活病毒的常规方法。虽然在各种微生物学课程中经常教授细菌和噬菌体的诱捕,但哺乳动物病毒的幽射更为复杂和耗时。该协议描述了可靠地用于单纯疱疹病毒常规工作的程序。

Abstract

有许多已发表的用于诱捕病毒的方案,包括主要文献中关于方法学的参考文献。然而,Plaquing病毒可能很难执行,需要专注于其规格和改进。对于新生来说,掌握这是一种非常具有挑战性的方法,主要是因为它需要对最微小的细节进行细致的关注。这种诱发单纯疱疹病毒的演示应该可以帮助那些多年来一直在努力可视化该方法的人,尤其是其细微差别。虽然本手稿基于标准绦塑方法的相同原则,但它的不同之处在于它包含以下详细说明:(1)如何最好地处理宿主细胞以避免在此过程中的中断,(2)比琼脂糖更有用的粘性培养基来限制病毒粒子的扩散,以及(3)简单的固定和染色程序,产生可靠的可重复结果。此外,随附的视频有助于展示过程中更精细的区别,在指导他人进行斑块测定时经常会错过这些区别。

Introduction

病毒斑块测定的开始可以追溯到 19 世纪 90 年代首次发现病毒1。首先分离出烟草花叶病毒并传递到烟叶上,其中可以识别和量化单个感染点,其起源于单个活病毒实体2,后来被鉴定为病毒粒子2。后来对细菌和噬菌体的开创性研究完善了用于斑块这些病毒的技术,包括生长中期的细菌,噬菌体样品的连续稀释,以及随后可视化细菌草坪中的字面孔(命名为斑块)的顶部琼脂3

动物病毒的攀爬滞了对噬菌体进行的激动人心的研究,主要是因为培养哺乳动物细胞所需的方法直到20世纪40年代才得到开发4。然而,在没有整个宿主生物体的情况下,生长中的鼠细胞的出现4催生了培养和计数病毒能力的新时代。这项工作在鸡细胞中传播和定量西马脑脊髓炎病毒和在人细胞中脊髓灰质炎病毒56。随着可培养哺乳动物细胞领域的扩大,不同宿主细胞对各种病毒感染的依赖为世界提供了研究各种病毒的可能性7。这包括人类疱疹病毒的传播和定量,特别是单纯疱疹病毒-1(HSV-1)和-2(HSV-2),它们会导致皮肤黏膜病变8。重要的是,所有斑块测定都依赖于活病毒体的存在,其可以在样品中以受体介导的方式进入宿主细胞9。尽管关于执行斑块测定的出版物无处不在和众多5,10,111213141516,这些用于HSV-1 / -2的方法都是艺术和科学的混合体;如果不适当注意方案中的每个细节,就无法进行测定,也不能在没有对过程中的微妙之处进行严格观察的情况下执行成功的测定。该手稿描述了HSV-1/-2斑块测定最一致的可重复性方法之一,并具有很少讨论的测定技术的精确细节。

目前的方案可靠地获得HSV-1和-2的活斑块形成单元(PFU)计数。使用低传代(低于传代号155)的Vero细胞(转化的非洲绿猴肾上皮细胞)获得最佳结果,并在补充了10 %胎儿小牛血清(FCS),L-丙氨酰-L-谷氨酰胺和抗生素/抗真菌混合物的α-MEM17中常规生长18。Vero细胞标准地在这种培养基中繁殖,每周两到三次,每次 稀释1/5

Protocol

Vero细胞和活疱疹病毒的所有程序均已获得陶森大学机构生物安全委员会的批准。这些过程的一般化方案如图 1 所示。 1. Vero细胞的接种 在开始斑块测定的前一天,胰蛋白酶消化Vero细胞,并按照标准细胞培养方法将其重悬于常规Dulbecco的改良鹰培养基(DMEM)和补充剂中19。将胰蛋白酶消化的细胞重悬于10mL DMEM中,每?…

Representative Results

表1显示了具有最佳结果的实验。所有10倍稀释后,斑块计数减少约10倍。这些类型的数据也可以在图2中看到,这是一种实际的斑块测定,其中所有三个重复的可计数斑块数量都在10-4范围内。在图3的顶行中可以看到相同的情况,其中可计数的斑块数在10-3稀释液中。 然而, 底行图3…

Discussion

虽然斑块测定几乎与哺乳动物细胞培养物本身一样古老,但似乎每个实验室都有自己的一套方案来执行这种基本测定561011121314151620

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢我们实验室(PJD和BJM)的无数学生,他们多年来一直与我们一起改进这些方法。特别感谢Stan Person,在他的指导下,这种方法首先得到了发展。这项工作得到了陶森大学费舍尔科学与数学学院本科生研究支持基金和NIGMS Bridges的部分支持,获得了学士学位补助金5R25GM058264。此内容完全是作者的责任,并不一定代表美国国立卫生研究院国家普通医学科学研究所的官方观点。

Materials

12-well plates Corning 3512
6-well plates Corning 3516
Alpha-MEM Lonza 12169F
Antibiotic/antimycotic Gibco 15240096
Crystal violet Alfa Aesar B2193214
DMEM Gibco 11965092
Dulbecco's PBS (no Mg++ or Ca++) Gibco 14190144
Fetal calf serum Millipore-Sigma TMS-013-B
L-alanyl-L-glutamine (Glutamax) Gibco GS07F161BA
Hemacytometer Thermo Fisher 02-671-54
Methylcellulose Millipore-Sigma 27-441-0
Quaternary agent (Lysol I.C.) Thermo Fisher NC9645698
Trypan Blue Corning 25900CI
Trypsin Cytiva SH30042.01
Vero cells ATCC CCL-81

References

  1. Dimmock, N., Easton, A., Leppard, K. . Introduction to Moden Virology. 6th end. , (2007).
  2. Mahy, B., Collier, L. . Topley and Wilson’s Microbiology and Microbial Infections. 9th edn. 1, (1998).
  3. Anderson, B., et al. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage. 1 (2), 86-93 (2011).
  4. Earle, W. R., et al. Production of malignancy in vitro; IV. The mouse fibroblast cultures and changes seen in the living cells. Journal of the National Cancer Institute. 4 (2), 165-212 (1943).
  5. Dulbecco, R., Vogt, M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harbor Symposia on Quantitative Biology. 18, 273-279 (1953).
  6. Enders, J. F., Weller, T. H., Robbins, F. C. Cultivation of the lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 109 (2822), 85-87 (1949).
  7. Enders, J. F. Cytopathology of virus infections: particular reference to tissue culture studies. Annual Review of Microbiology. 8, 473-502 (1954).
  8. Roizman, B., Knipe, D. M., Whitley, R. J., Knipe, D. M., et al. . Fields Virology. 1, 1823-1897 (2013).
  9. Madavaraju, K., Koganti, R., Volety, I., Yadavalli, T., Shukla, D. Herpes simplex virus cell entry mechanisms: An update. Frontiers in Cellular and Infection Microbiology. 10, 617578 (2020).
  10. Cooper, P. D. The plaque assay of animal viruses. Advances in Virus Research. 8, 319-378 (1961).
  11. Farnham, A. E. The formation of microscopic plaques by herpes simplex virus in HeLa cells. Virology. 6 (2), 317-327 (1958).
  12. Garabedian, G. A., Scott, L. V. Plaque assay for herpes simplex virus in L-929 (Earle) mouse fibroblasts. Proceedings of the Society for Experimental Biology and Medicine. 126 (2), 568-571 (1967).
  13. Lancz, G. J. Herpes simplex viruses types 1 and 2. Type and strain specific characteristics affecting virus plaque formation. Arch Gesamte Virusforsch. 46 (1-2), 36-43 (1974).
  14. Muratore, O., Tonoli, E. L., Pesce Schito, A. A short-term plaque assay for antiviral drug research on herpes simplex virus type 2. New Microbiologica. 19 (3), 257-261 (1996).
  15. Sato, S., Kaneki, H., Shirai, J., Takahashi, K., Kawana, R. Differentiation of herpes simplex virus types 1 and 2 by plaque appearances on semicontinuous rabbit lens epithelial cells in the clinical laboratory. Kansenshogaku Zasshi. 67 (6), 561-573 (1993).
  16. Yazaki, S., Taniguchi, S., Yoshino, K. Improvement of the plaque assay of herpes simplex virus in HeLa cells. Japanese Jouranl of Microbiology. 10 (3), 133-139 (1966).
  17. Stanners, C. P., Eliceiri, G. L., Green, H. Two types of ribosome in mouse-hamster hybrid cells. Nature New Biology. 230 (10), 52-54 (1971).
  18. Giannasca, N. J., Suon, J. S., Evans, A. C., Margulies, B. J. Matrix-based controlled release delivery of acyclovir from poly-(ethylene co-vinyl acetate) rings. Journal of Drug Delivery Science and Technology. 55, 101391 (2020).
  19. Freshney, R. I. . Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 7th edn. , (2016).
  20. Dulbecco, R. Production of plaques in monolayer tissue cultures by single particles of an animal virus. Proceedings of the National Academy of Science, USA. 38 (8), 747-752 (1952).
  21. Baer, A., Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. Journal of Visualized Experiments. (93), e52065 (2014).
  22. Matrosovich, M., Matrosovich, T., Garten, W., Klenk, H. D. New low-viscosity overlay medium for viral plaque assays. Virology Journal. 3, 63 (2006).
  23. Culley, S., Towers, G. J., Selwood, D. L., Henriques, R., Grove, J. Infection counter: Automated quantification of in vitro virus replication by fluorescence microscopy. Viruses. 8 (7), 201 (2016).
  24. Hudu, S. A., et al. Quantitative Hepatitis B e antigen: A better predictor of Hepatitis B virus DNA than quantitative Hepatitis B surface antigen. Clinical Laboratory. 64 (4), 443-449 (2018).
  25. Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 226 (5252), 1209-1211 (1970).
  26. Scolnick, E. M., Aaronson, S. A., Todaro, G. J., Parks, W. P. RNA dependent DNA polymerase activity in mammalian cells. Nature. 229 (5283), 318-321 (1971).
  27. Strick, L. B., Wald, A. Diagnostics for herpes simplex virus: is PCR the new gold standard. Molecular Diagnosis and Therapy. 10 (1), 17-28 (2006).
  28. Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World Jouranl of Virology. 5 (2), 85-86 (2016).
  29. Kärber, G. Beitrag zue kollektiven Behandlung pharmakologischer pharmakologischer Reihenversuche. Archiv for Experimentelle Pathologie und Pharmakologie. 162 (4), 480-487 (1931).
  30. Reed, L. J., Muench, H. A simple method of estimating fifty percent endpoints. American Journal of Hygiene. 27 (3), 493-497 (1938).
  31. Spearman, C. The Method of ‘Right and Wrong Cases’ (Constant Stimuli) without Gauss’s formula. British Journal of Psychology. 2 (3), 227-242 (1908).
  32. Ryu, W. -. S. . Molecular Virology of Human Pathogenic Viruses. 1st edn. , (2017).
  33. Burrill, C. P., Strings, V. R., Andino, R. Poliovirus: generation, quantification, propagation, purification, and storage. Current Protocols in Microbiology. , (2013).
  34. Karakus, U., Crameri, M., Lanz, C., Yanguez, E. Propagation and titration of influenza viruses. Methods in Molecular Biology. 1836, 59-88 (2018).
  35. Baz, M. Zika virus isolation, purification, and titration. Methods in Molecular Biology. 2142, 9-22 (2020).
  36. Coleman, C. M., Frieman, M. B. Growth and quantification of MERS-CoV infection. Current Protocols in Microbiology. 37 (1), 1-9 (2015).

Play Video

Cite This Article
Sadowski, L. A., Lesko, G. M., Suissa, C., Upadhyay, R., Desai, P. J., Margulies, B. J. Plaquing of Herpes Simplex Viruses. J. Vis. Exp. (177), e62962, doi:10.3791/62962 (2021).

View Video