Summary

使用MALDI-TOF-TOF-MS/MS和自上而下的蛋白质组学分析鉴定 大肠杆菌 中的抗菌免疫蛋白

Published: May 23, 2021
doi:

Summary

在这里,我们提出了一种方案,用于使用MALDI-TOF-TOF串联质谱和自上而下的蛋白质组学分析以及内部开发的软件快速鉴定基因组测序的致病细菌产生的蛋白质。亚稳态蛋白离子片段由于天冬氨酸效应和这种特异性被用于蛋白质鉴定。

Abstract

该协议鉴定了杀菌酶的免疫蛋白:大肠杆菌E3和细菌素,由使用抗生素诱导的致病性 大肠杆菌 菌株产生,并通过MALDI-TOF-TOF串联质谱和自上而下的蛋白质组学分析与内部开发的软件进行鉴定。通过天冬氨酸效应片段化机理,从天冬氨酸、谷氨酸和天冬酰胺残基C端多肽骨链裂解(PBC)产生的突出的b型和/或y型片段离子中鉴定出绞增素E3(Im3)的免疫蛋白和细菌素(Im-Bac)的免疫蛋白。该软件可快速扫描来自细菌菌株全基因组测序的 质蛋白质序列。该软件还可以在成熟蛋白质序列被截断的情况下迭代删除蛋白质序列的氨基酸残基。单个蛋白质序列具有与每种免疫蛋白检测到的离子一致的质量和片段离子。然后手动检查候选序列,以确认可以分配所有检测到的片段离子。Im3的N端蛋氨酸被翻译后去除,而Im-Bac具有完整的序列。此外,我们发现只有两到三个由PBC形成的非互补片段离子是鉴定正确蛋白质序列所必需的。最后,在细菌菌株的质粒基因组中鉴定出抗菌和免疫基因的上游的启动子(SOS盒)。

Introduction

通过质谱法分析和鉴定未消化的蛋白质被称为自上而下的蛋白质组学分析1,2,3,4。它现在是一种成熟的技术,利用电喷雾电离(ESI)5和高分辨率质量分析仪6,以及复杂的解离技术,例如电子转移解离(ETD),电子捕获解离(ECD)7,紫外线光解离(UV-PD)8等。

另一种软电离技术是基质辅助激光解吸/电离(MALDI)9,10,11,该技术在自上而下分析中的应用较少,部分原因是它主要耦合到飞行时间(TOF)质量分析仪,与其他质量分析仪相比,其分辨率有限。尽管存在这些局限性,但MALDI-TOF和MALDI-TOF-TOF仪器已被用于纯蛋白质以及蛋白质的分馏和普通混合物的快速自上而下分析。对于纯蛋白质的鉴定,源内衰变(ISD)是一种特别有用的技术,因为它允许对ISD片段离子进行质谱(MS)分析,以及蛋白质离子片段的串联质谱(MS / MS),提供通常来自靶蛋白的N-和C-末端的序列特异性片段,类似于Edman测序12,13 .ISD方法的缺点是,与Edman测序一样,样品必须只包含一种蛋白质。一种蛋白质要求是由于需要明确地将片段离子归因于前体离子。如果样品中存在两种或多种蛋白质,则可能很难分配哪些片段离子属于哪些前体离子。

片段离子/前体离子归属可以使用MALDI-TOF-TOF-MS/MS来解决。与任何经典的MS / MS实验一样,前体离子在碎片化之前被质量选择/分离,检测到的碎片离子可以归因于特定的前体离子。然而,可用于这种方法的解离技术主要限于高能碰撞诱导的解离(HE-CID)14或后源衰变(PSD)15,16。HE-CID和PSD在片段化肽和小蛋白质方面最有效,并且在某些情况下,序列覆盖率可能受到限制。此外,PSD导致多肽骨架裂解(PBC)主要在天冬氨酸和谷氨酸残基的C端侧通过称为天冬氨酸效应的现象17,18,19,20。

MALDI-TOF-MS在微生物分类鉴定中也发现了一个利基应用:细菌21,真菌22和病毒23。例如,MS光谱用于通过使用模式识别算法进行比较的已知细菌的MS光谱参考库来识别未知细菌。这种方法因其速度和简单性而证明非常成功,尽管需要过夜培养分离物。通过这种方法检测到的蛋白质离子(通常低于20 kDa)包括MS指纹,允许在属和物种水平上进行分类分辨率,在某些情况下在亚种24和菌株水平25,26上进行分类分辨率。然而,不仅需要从分类学上对潜在的致病微生物进行分类,还需要确定特定的毒力因子、毒素和抗菌素耐药性(AMR)因子。为了实现这一点,肽,蛋白质或小分子的质量通过MS测量,然后通过MS / MS分离和片段化。

致病细菌通常携带称为质粒的圆形DNA片段。质粒和前噬细胞是细菌之间水平基因转移的主要载体,负责抗菌素耐药性和其他毒力因子在细菌中的快速传播。质粒也可能携带抗菌(AB)基因,例如大肠杆菌素和细菌素。当这些基因被表达并且蛋白质分泌时,它们的作用是禁用占据相同环境生态位的相邻细菌的蛋白质翻译机制27。然而,这些杀菌酶也会对产生它们的宿主构成风险。因此,宿主共表达一个基因,该基因特异性地抑制AB酶的功能,被称为其免疫蛋白(Im)。

破坏DNA的抗生素如丝裂霉素-C和环丙沙星通常用于诱导产志贺毒素的大肠杆菌(STEC)的SOS反应,其志贺毒素基因(stx)存在于细菌基因组中存在的原噬菌体基因组中28。我们以前使用抗生素诱导,MALDI-TOF-TOF-MS / MS和自上而下的蛋白质组学分析来检测和鉴定STEC菌株29,30,31,32产生的Stx类型和亚型。在之前的工作中,STEC O113:H21菌株RM7788在补充丝裂霉素-C的琼脂培养基上培养过夜。然而,不是在m / z〜7816处检测到Stx2a的预期B亚基,而是在m /z〜7839处检测到不同的蛋白质离子,并将其鉴定为具有未知功能的质粒编码的假设蛋白质33。在目前的工作中,我们鉴定了两种质粒编码的AB-Im蛋白,这些质粒编码的AB-Im蛋白使用抗生素诱导,MALDI-TOF-TOF-MS / MS和自上而下的蛋白质组学分析,使用开发的独立软件处理和扫描来自全基因组测序(WGS)的硅质蛋白序列。此外,该软件还包含了涉及序列截断的翻译后修改(PTM)的可能性。使用该软件从天冬氨酸效应引起的成熟蛋白离子和PBC序列特异性片段离子的测量质量中鉴定免疫蛋白,并通过MS / MS-PSD检测。最后,在质粒基因组中AB / Im基因的上游鉴定出一种启动子,当该菌株暴露于DNA损伤抗生素时,该启动子可以解释这些基因的表达。这项工作的部分内容在美国国家化学学会2020年秋季虚拟会议和博览会(2020年8月17日至20日)上发表34

Protocol

1. 微生物样品制备 使用无菌的1μL环将25 mL Luria肉汤(LB)接种在50 mL锥形管中,其中含有 大肠杆菌 O113:H21菌株RM7788(或其他细菌菌株)。盖上管子并在37°C下振荡(200rpm)预培养4小时。 等分100μL预培养的肉汤,并铺展到补充有400或800ng / mL丝裂霉素-C的LB琼脂平板上。将琼脂平板在37°C的培养箱中静态过夜。注意:STEC菌株是致病微生物。在BSL-2生物安全柜中执行除培养之外…

Representative Results

图3(顶图)显示了在补充400ng / mL丝裂霉素-C的LBA上培养过夜的STEC O113:H21菌株RM7788的MS。m / z 7276,7337和7841处的峰先前已被鉴定为冷休克蛋白C(CspC),冷休克蛋白E(CspE)和功能未知的质粒传播蛋白,分别为33。通过MS / MS-PSD分析m / z 9780 [M + H]+ 处的蛋白质离子, 如图3 所示(底部面板)。前体离子用定时离子选择器(TIS)窗?…

Discussion

协议注意事项
当前方案的主要优势是其速度,样品制备的简单性以及使用相对易于操作,训练和维护的仪器。尽管通过液相色谱-ESI-HR-MS进行的自下而上和自上而下的蛋白质组学分析无处不在,并且在许多方面远远优于MALDI-TOF-TOF自上而下的蛋白质组学分析,但它们需要更多的时间,劳动力和专业知识。仪器的复杂性通常会影响某些仪器平台是否有可能被未接受过质谱学正式培训的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

蛋白质生物标志物搜索软件可通过联系 clifton.fagerquist@usda.gov 的Clifton K. Fagerquist免费获得(免费)。我们希望感谢ARS,USDA,CRIS拨款:2030-42000-051-00-D对这项研究的支持。

Materials

4000 Series Explorer software AB Sciex Version 3.5.3
4800 Plus MALDI TOF/TOF Analyzer AB Sciex
Acetonitrile Optima LC/MS grade Fisher Chemical A996-1
BSL-2 biohazard cabinet The Baker Company SG403A-HE
Cytochrome-C Sigma C2867-10MG
Data Explorer software AB Sciex Version 4.9
Focus Protein Reduction-Alkylation kit G-Biosciences 786-231
GPMAW software Lighthouse Data Version 10.0
Incubator VWR 9120973
LB Agar Invitrogen 22700-025
Luria Broth Invitrogen 12795-027
Lysozyme Sigma L4919-1G
Microcentrifuge Tubes, 2 mL, screw-cap, O-ring Fisher Scientific 02-681-343
MiniSpin Plus Centrifuge Eppendorf 22620207
Mitomycin-C (from streptomyces) Sigma-Aldrich M0440-5MG
Myoglobin Sigma M5696-100MG
Shaker MaxQ 420HP Model 420 Thermo Scientific Model 420
Sinapinic acid Thermo Scientific 1861580
Sterile 1 uL loops Fisher Scientific 22-363-595
Thioredoxin (E. coli, recombinant) Sigma T0910-1MG
Trifluoroacetic acid Sigma-Aldrich 299537-100G
Water Optima LC/MS grade Fisher Chemical W6-4

References

  1. Fornelli, L., et al. Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple ion activation techniques. Analytical Chemistry. 90 (14), 8421-8429 (2018).
  2. Fornelli, L., et al. Top-down proteomics: Where we are, where we are going. Journal of Proteomics. 175, 3-4 (2018).
  3. He, L., et al. Top-down proteomics-a near-future technique for clinical diagnosis. Annals of Translational Medicine. 8 (4), 136 (2020).
  4. Wu, Z., et al. MASH explorer: A universal software environment for top-down proteomics. Journal of Proteome Research. 19 (9), 3867-3876 (2020).
  5. Konermann, L., Metwally, H., Duez, Q., Peters, I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst. 144 (21), 6157-6171 (2019).
  6. Bourmaud, A., Gallien, S., Domon, B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics. 16 (15-16), 2146-2159 (2016).
  7. Hart-Smith, G. A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry. Analitica Chimica Acta. 808, 44-55 (2014).
  8. Brodbelt, J. S., Morrison, L. J., Santos, I. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chemical Reviews. 120 (7), 3328-3380 (2020).
  9. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. International Journal of Mass Spectrometry and Ion Processes. 78, 53-68 (1987).
  10. Karas, M., Bachmann, D., Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet-laser desorption mass-spectrometry of organic-molecules. Analytical Chemistry. 57 (14), 2935-2939 (1985).
  11. Tanaka, K., et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry. 2 (8), 151-153 (1988).
  12. Resemann, A., et al. Top-down de Novo protein sequencing of a 13.6 kDa camelid single heavy chain antibody by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry. Analytical Chemistry. 82 (8), 3283-3292 (2010).
  13. Suckau, D., Resemann, A. T3-sequencing: targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry. Analytical Chemistry. 75 (21), 5817-5824 (2003).
  14. Mikhael, A., Jurcic, K., Fridgen, T. D., Delmas, M., Banoub, J. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (negative ion mode) of French Oak Lignin: A Novel Series of Lignin and Tricin Derivatives attached to Carbohydrate and Shikimic acid Moieties. Rapid Communications in Mass Spectrometry. 34 (18), 8841 (2020).
  15. Demirev, P. A., Feldman, A. B., Kowalski, P., Lin, J. S. Top-down proteomics for rapid identification of intact microorganisms. Analytical Chemistry. 77 (22), 7455-7461 (2005).
  16. Fagerquist, C. K. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization. Expert Review of Proteomics. 14 (1), 97-107 (2017).
  17. Gu, C., Tsaprailis, G., Breci, L., Wysocki, V. H. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides. Analytical Chemistry. 72 (23), 5804-5813 (2000).
  18. Herrmann, K. A., Wysocki, V. H., Vorpagel, E. R. Computational investigation and hydrogen/deuterium exchange of the fixed charge derivative tris(2,4,6-trimethoxyphenyl) phosphonium: implications for the aspartic acid cleavage mechanism. Journal of the American Society for Mass Spectrometry. 16 (7), 1067-1080 (2005).
  19. Rozman, M. Aspartic acid side chain effect-experimental and theoretical insight. Journal of the American Society for Mass Spectrometry. 18 (1), 121-127 (2007).
  20. Yu, W., Vath, J. E., Huberty, M. C., Martin, S. A. Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry. Analytical Chemistry. 65 (21), 3015-3023 (1993).
  21. Luethy, P. M., Johnson, J. K. The use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for the identification of pathogens causing sepsis. The Journal of Applied Laboratory Medicine. 3 (4), 675-685 (2019).
  22. Knabl, L., Lass-Florl, C. Antifungal susceptibility testing in Candida species: current methods and promising new tools for shortening the turnaround time. Expert Review of Anti-Infective Therapy. 18 (8), 779-787 (2020).
  23. Gould, O., Ratcliffe, N., Krol, E., de Lacy Costello, B. Breath analysis for detection of viral infection, the current position of the field. Journal of Breath Research. 14 (4), 041001 (2020).
  24. Fagerquist, C. K., et al. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. Journal of Proteome Research. 5 (10), 2527-2538 (2006).
  25. Sandrin, T. R., Goldstein, J. E., Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrometry Reviews. 32 (3), 188-217 (2013).
  26. Christner, M., et al. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PLoS One. 9 (7), 101924 (2014).
  27. Masaki, H., Ohta, T. Colicin E3 and its immunity genes. Journal of Molecular Biology. 182 (2), 217-227 (1985).
  28. Michel, B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biology. 3 (7), 255 (2005).
  29. Fagerquist, C. K., Sultan, O. Induction and identification of disulfide-intact and disulfide-reduced beta-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS and top-down proteomics. Analyst. 136 (8), 1739-1746 (2011).
  30. Fagerquist, C. K., Sultan, O. Top-down proteomic identification of furin-cleaved alpha-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS. Journal of Biomedicine & Biotechnology. 2010, 123460 (2010).
  31. Fagerquist, C. K., et al. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Applied and Environmental Microbiology. 80 (9), 2928-2940 (2014).
  32. Fagerquist, C. K., Zaragoza, W. J., Lee, B. G., Yambao, J. C., Quiñones, B. Clinically-relevant Shiga toxin 2 subtypes from environmental Shiga toxin-producing Escherichia coli identified by top-down/middle-down proteomics and DNA sequencing. Clinical Mass Spectrometry. 11, 27-36 (2019).
  33. Fagerquist, C. K., Lee, B. G., Zaragoza, W. J., Yambao, J. C., Quiñones, B. Software for top-down proteomic identification of a plasmid-borne factor (and other proteins) from genomically sequenced pathogenic bacteria using MALDI-TOF-TOF-MS/MS and post-source decay. International Journal of Mass Spectrometry. 438, 1-12 (2019).
  34. Fagerquist, C. K., Rojas, E. . ACS Fall 2020 Virtual Meeting & Expo. American Chemical Society, Virtual. , (2020).
  35. Fagerquist, C. K., Sultan, O. A new calibrant for matrix-assisted laser desorption/ionization time-of-flight-time-of-flight post-source decay tandem mass spectrometry of non-digested proteins for top-down proteomic analysis. Rapid Communications in Mass Spectrometry. 26 (10), 1241-1248 (2012).
  36. Fagerquist, C. K., Zaragoza, W. J. Complementary b/y fragment ion pairs from post-source decay of metastable YahO for calibration of MALDI-TOF-TOF-MS/MS. International Journal of Mass Spectrometry. 415, 29-37 (2017).
  37. Quinones, B., Yambao, J. C., Lee, B. G. Draft genome sequences of Escherichia coli O113:H21 strains recovered from a major produce production region in California. Genome Announcements. 5 (44), 01203-01217 (2017).
  38. Harrison, A. G. The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrometry Reviews. 16 (4), 201-217 (1997).
  39. Fagerquist, C. K. Polypeptide backbone cleavage on the C-terminal side of asparagine residues of metastable protein ions analyzed by MALDI-TOF-TOF-MS/MS and post-source decay. International Journal of Mass Spectrometry. 457, (2020).
  40. Fagerquist, C. K., Zaragoza, W. J. . Mass Spectrometry: Application to the Clinical Lab 2019 (MSACL 2019). , (2019).
  41. Fagerquist, C. K., Zaragoza, W. J. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxins 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry. 30 (6), 671-680 (2016).
  42. Fagerquist, C. K., et al. Web-based software for rapid top-down proteomic identification of protein biomarkers, with implications for bacterial identification. Applied and Environmental Microbiology. 75 (13), 4341-4353 (2009).
  43. Fagerquist, C. K., et al. Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Analytical Chemistry. 82 (7), 2717-2725 (2010).
  44. Maus, A., Bisha, B., Fagerquist, C., Basile, F. Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS. Journal of Applied Microbiology. 128 (3), 697-709 (2020).

Play Video

Cite This Article
Fagerquist, C. K., Rojas, E. Identification of Antibacterial Immunity Proteins in Escherichia coli using MALDI-TOF-TOF-MS/MS and Top-Down Proteomic Analysis. J. Vis. Exp. (171), e62577, doi:10.3791/62577 (2021).

View Video