Summary

通过将激光蚀刻和染料结合,美学增强硅气凝胶

Published: March 12, 2021
doi:

Summary

该协议描述了一种将文本、图案和图像蚀刻到原生和染色形式的硅气凝胶巨石表面的方法,并将气凝胶组装成马赛克设计。

Abstract

本文稿中描述了通过激光蚀刻和染料结合在美学上增强二氧化硅气凝胶单片的程序。使用快速超临界萃取方法,可在大约 10 小时内制造出大型二氧化硅气凝胶巨石(10 厘米 x 11 厘米 x 1.5 厘米)。加入前体混合物中的染料会导致黄色、粉红色和橙色的气凝胶。文本、图案和图像可以蚀刻在气凝胶巨石的表面(或表面),而不会损坏散装结构。激光雕刻机可用于从气凝胶上切割形状,形成五颜六色的马赛克。

Introduction

硅气凝胶是一种纳米填充、高表面积、低导热性声学绝缘材料,可用于从收集空间灰尘到制造绝缘材料1、2等一系列应用。当以单片形式制造时,硅气凝胶是半透明的,可用于制造高度绝缘的窗户3,4,5。

最近,我们已经证明,通过蚀刻或切割表面使用激光雕刻系统6,7,可以改变二氧化硅气凝胶的外观而不会对气凝胶造成大量结构损坏。这可能有助于提高美学,打印库存信息和将气凝胶巨石加工成各种形式。已证明,飞秒激光器适用于空气凝胶8、9、10、11的粗”微加工”:然而,目前的协议证明能够改变气凝胶的表面与一个简单的激光雕刻系统。因此,本议定书广泛适用于艺术和技术界。

也可以将染料融入气凝胶化学前体混合物中,从而制造出具有多种色调的染料掺杂气凝胶。这种方法已用于制造化学传感器12,13,以提高塞伦科夫检测14,纯粹出于美学原因。在这里,我们演示了使用染料和激光蚀刻来准备美观的气凝胶。

在随后的部分,我们描述了制作大型硅气凝胶巨石的程序,改变了巨石制备程序,将染料、蚀刻文字、图案和图像整合到气凝胶巨石表面,以及从大染色巨石中切割形状,组装成马赛克。

Protocol

在准备气凝胶前体溶液、使用热压机和使用激光雕刻系统时,应佩戴安全眼镜或护目镜。清洁和准备模具时应佩戴实验室手套,准备化学试剂溶液,在热压机中将溶液倒入模具中并处理气凝胶。在与所有化学品(包括溶剂)合作之前,请阅读安全数据表 (SDS)。四甲基正硅酸盐(TMOS)、甲醇和浓缩氨以及含有这些试剂的溶液必须在烟气罩内处理。染料可能是有毒和/或致癌的,因此使用适当的个?…

Representative Results

本协议可用于为各种美观的气凝胶巨石的应用(包括但不限于艺术和可持续的建筑设计)准备各种美观的气凝胶巨石。将少量染料加入此处,只观察到会影响由此产生的气凝胶单片的颜色;未观察到其他光学或结构特性的变化。 图8显示了从大硅巨石中制备气凝胶马赛克的方法。相同的图案(如图<strong clas…

Discussion

该协议演示了如何利用激光蚀刻和染料的加入来准备美观的气凝胶材料。

制造大(10 厘米 x 11 厘米 x 1.5 厘米)气凝胶巨石需要通过打磨、清洁和润滑脂应用进行适当的模具制备,以防止气凝胶粘附在模具上,防止形成主要裂缝。与前体溶液直接接触/即将形成气凝胶的模具部件是最关键的。通过机器抛光降低模具的表面粗糙度将提高性能。重要的是,只将润滑脂涂抹在模具顶…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者希望感谢联合学院教师研究基金、学生研究补助金计划以及该项目的暑期本科生研究计划。作者还要感谢乔安娜桑托斯设计的三件式模具,克里斯·阿瓦尼西安为SEM成像,罗纳德·托奇蚀刻在弯曲的气凝胶表面,和约安尼斯·米查卢迪斯博士的灵感和初步工作蚀刻项目,以及提供库罗斯图像和圆柱形气凝胶。

Materials

2000 grit sandpaper Various
50W Laser Engraver Epilog Laser Any laser cutter is suitable
Acetone Fisher Scientific www.fishersci.com A18-20 Certified ACS Reagent Grade 
Ammonium Hydroxide (aqueous ammonia) Fisher Scientific www.fishersci.com A669S212 Certified ACS Plus, about 14.8N, 28.0-20.0 w/w%
Beakers Purchased from Fisher Scientific Any glass beaker is suitable.
Deionized Water On tap in house
Digital balance OHaus Explorer Pro Any digital balance is suitable.
Disposable cleaning wipes Fisher Scientific www.fishersci.com 06-666 KimWipe
Drawing Software CorelDraw Graphics Suite CorelDraw
Flexible Graphite Sheet Phelps Industrial Products 7500.062.3 1/16" thick
Fluorescein Sigma Aldrich www.sigmaaldrich.com F2456 Dye content ~95%
Foam paint brush  Various  1-2 cm size
High Vacuum Grease Dow Corning
Hydraulic Hot Press Tetrahedron www.tetrahedronassociates.com MTP-14 Any hot press with temperature and force control will work. Needs maximum temperature of ~550 F and maximum force of 24 tons.
Laser Engraver Epilogue Laser Helix – 24 50 W
Methanol (MeOH) Fisher Scientific www.fishersci.com A412-20 Certified ACS Reagent Grade, ≥99.8%
Mold Fabricated in House Fabricate from cold-rolled steel or stainless steel.
Paraffin Film Fisher Scientific www.fishersci.com S37441 Parafilm M Laboratory Film
Rhodamine-6G
Rhodamine-6g
FlouresceinRhodamine-6g
Sigma Aldrich www.sigmaaldrich.com 20,132-4 Dye content ~95%
Rhodamine-B
Rhodamine-6g
FlouresceinRhodamine-6g
Sigma Aldrich www.sigmaaldrich.com R-953 Dye content ~80%
Soap to clean mold Various
Stainless Steel Foil Various .0005" thick, 304 Stainless Steel
Tetramethylorthosilicate (TMOS) Sigma Aldrich www.sigmaaldrich.com 218472-500G 98% purity, CAS 681-84-5
Ultrasonic Cleaner FisherScientific FS6 153356 Any sonicator is suitable.
Vacuum Exhaust system Purex 800i Any exhaust system is suitable.
Variable micropipettor, 100-1000 µL Manufactured by Eppendorf, purchased from Fisher Scientific www.fishersci.com S304665 Any 100-1000 µL pipettor is suitable.

References

  1. Aegerter, M. A., Leventis, N., Koebel, M. M. . Aerogels Handbook. , (2011).
  2. Pierre, A. C., Pajonk, G. M. Chemistry of aerogels and their applications. Chemical Reviews. 102 (11), 4243-4266 (2002).
  3. Zinzi, M., et al. Optical and visual experimental characterization of a glazing system with monolithic silica aerogel. Solar Energy. 183, 30-39 (2019).
  4. Bhuiya, M. M. H., et al. Preparation of monolithic silica aerogel for fenestration applications: scaling up, reducing cycle time, and improving performance. Industrial & Engineering Chemistry Research. 55 (25), 6971-6981 (2016).
  5. Jelle, B. P., et al. Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells. 96, 1-28 (2012).
  6. Michalous, I., Carroll, M. K., Kupiec, S., Cook, K., Anderson, A. M. Facile method for surface etching of silica aerogel monoliths. Journal of Sol-Gel Science and Technology. 87 (1), 22-26 (2018).
  7. Stanec, A. M., Anderson, A. M., Avanessian, C., Carroll, M. K. Analysis and characterization of etched silica aerogels. Journal of Sol-Gel Science and Technology. 94, 406-415 (2020).
  8. Sun, J., Longtin, J. P., Norris, P. M. Ultrafast laser micromachining of silica aerogels. Journal of Non-Crystalline Solids. 281 (1-3), 39-47 (2001).
  9. Bian, Q., et al. Micromachining of polyurea aerogel using femtosecond laser pulses. Journal of Non-Crystalline Solids. 357 (1), 186-193 (2011).
  10. Yalizay, B., et al. Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation. Optical Materials. 47, 478-483 (2015).
  11. Vainos, N. A., Karoutsos, V., Mills, B., Eason, R. W., Prassas, M. Isotropic contractive scaling of laser written microstructures in vitrified aerogels. Optical Materials Express. 6 (12), 3814-3825 (2016).
  12. Plata, D. L., et al. Aerogel-platform optical sensors for oxygen gas. Journal of Non- Crystalline Solids. 350, 326-335 (2004).
  13. Carroll, M. K., Anderson, A. M., Aegerter, M., Leventis, N., Koebel, M. Aerogels as platforms for chemical sensors. Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. , (2011).
  14. Bockhorst, M., Heinloth, K., Pajonk, G. M., Begag, R., Elaloui, E. Fluorescent dye doped aerogels for the enhancement of Cerenkov light detection. Journal of Non-Crystalline Solids. 186, 388-394 (1995).
  15. Carroll, M. K., Anderson, A. M., Gorka, C. A. Preparing silica aerogel monoliths via a rapid supercritical extraction method. Journal of Visualized Experiments: JoVE. (84), e51421 (2014).
  16. Gauthier, B. M., Bakrania, S. D., Anderson, A. M., Carroll, M. K. A fast supercritical extraction technique for aerogel fabrication. Journal of Non-Crystalline Solids. 350, 238-243 (2004).
  17. Gauthier, B. M., Anderson, A. M., Bakrania, S. D., Mahony, M. K., Bucinell, R. B. Method and device for fabricating aerogels and aerogel monoliths obtained thereby. U.S. Patent. , (2011).
  18. Gauthier, B. M., Anderson, A. M., Bakrania, S. D., Mahony, M. K., Bucinell, R. B. Method and device for fabricating aerogels and aerogel monoliths obtained thereby. U.S. Patent. , (2008).
  19. Estok, S. K., Hughes, T. A., Carroll, M. K., Anderson, A. M. Fabrication and characterization of TEOS-based silica aerogels prepared using rapid supercritical extraction. Journal of Sol-gel Science and Technology. 70 (3), 371-377 (2014).
  20. Roth, T. B., Anderson, A. M., Carroll, M. K. Analysis of a rapid supercritical extraction aerogel fabrication process: Prediction of thermodynamic conditions during processing. Journal of Non-Crystalline Solids. 354 (31), 3685-3693 (2008).
  21. Bouck, R. M., Anderson, A. M., Prasad, C., Hagerman, M. E., Carroll, M. K. Cobalt-alumina sol gels: Effects of heat treatment on structure and catalytic ability. Journal of Non-Crystalline Solids. 453, 94-102 (2016).
  22. Dunn, N. J. H., Carroll, M. K., Anderson, A. M. Characterization of alumina and nickel-alumina aerogels prepared via rapid supercritical extraction. Polymer Preprints. 52 (1), 250-251 (2011).
  23. Tobin, Z. M., et al. Preparation and characterization of copper-containing alumina and silica aerogels for catalytic applications. Journal of Sol-gel Science and Technology. 84 (3), 432-445 (2017).
  24. Tsou, P., Brownlee, D. E., Glesias, R., Grigoropoulos, C. P., Weschler, M. Cutting silica aerogel for particle extraction. Lunar and Planetary Science XXXVI. Part 19. , (2005).
  25. Ishii, H. A., et al. Rapid extraction of dust impact tracks from silica aerogel by ultrasonic microblades. Meteoritics & Planetary Science. 40 (11), 1741-1747 (2005).
  26. Ishii, H. A., Bradley, J. P. Macroscopic subdivision of silica aerogel collectors for sample return missions. Meteoritics & Planetary Science. 41 (2), 233-236 (2006).

Play Video

Cite This Article
Stanec, A. M., Hajjaj, Z., Carroll, M. K., Anderson, A. M. Aesthetically Enhanced Silica Aerogel Via Incorporation of Laser Etching and Dyes. J. Vis. Exp. (169), e61986, doi:10.3791/61986 (2021).

View Video