Nöronlar için çeşitli sinaptik girdilerin entegrasyonu en iyi doğal zamanlama ve devre plastisite için tüm pre-sinaptik çekirdekleri koruyan bir hazırlık ölçülür, ancak beyin dilimleri genellikle birçok bağlantıları sever. In vitro deney yeteneğini korurken in vivo devre aktivitesini taklit etmek için değiştirilmiş bir beyin dilimi geliştirdik.
In vitro dilim elektrofizyoloji teknikleri hassas elektriksel ve zamansal çözünürlük ile tek hücreli aktiviteölçmek. Beyin dilimleri düzgün görselleştirmek ve yama-kelepçeleme veya görüntüleme için nöronlar erişmek için nispeten ince olmalıdır, ve beyin devrelerinin in vitro muayene sadece fiziksel olarak akut dilim mevcut ne sınırlıdır. Presinaptik çekirdeklerin daha büyük bir kısmını korurken in vitro dilim denemenin faydalarını korumak için yeni bir dilim hazırlığı geliştirdik. Bu “kama dilimi” beyin sapındaki medial olivocochlear (MOC) nöronlara çeşitli monaural, ses odaklı girdileri karakterize etmek için yama-kelepçe elektrofizyoloji kayıtları için tasarlanmıştır. Bu nöronlar kontralateral kulak ve buna karşılık gelen koklear çekirdek (CN) uyaranlarla aktive nöronlardan birincil afferent uyarıcı ve inhibitör girdileri alırsınız. Asimetrik bir beyin dilimi, bir yarımkürenin lateral kenarında ki rostro-kaudal etki alanında en kalın olan ve daha sonra karşı yarımkürenin lateral kenarına doğru incelen tasarlanmıştır. Bu dilim içerir, kalın tarafında, işitsel sinir kökü beyne işitsel uyaranlar hakkında bilgi iletiyor, içsel CN devre, ve hem disynaptic uyarıcı ve trisinaptik inhibitör arayolları kontralateral MOC nöronlar üzerinde yakınsama. Kayıt, dilimin ince tarafındaki MOC nöronlarından gerçekleştirilir ve burada tipik yama-kıskaç deneyleri için DIC optikleri kullanılarak görselleştirilir. İşitsel sinirin doğrudan uyarılması, işitsel beyin sapına girerken yapılır, içsel CN devre aktivitesi ve sinaptik plastisite için MOC nöronların sinapsupstream meydana izin. Bu teknikle in vivo devre aktivasyonunu dilim içinde mümkün olduğunca yakından taklit edebilirsiniz. Bu kama dilimi hazırlığı, devre analizlerinin in vitro dilim fizyolojisinin teknik avantajlarıyla birlikte yukarı akım bağlantısının ve uzun menzilli girdilerin korunmasından yararlanacağı diğer beyin devreleri için geçerlidir.
Nöral devrelerin aktivitesinin gözlemi ideal olarak doğal duyusal girişler ve geri bildirimler ile gerçekleştirilir, ve beyin bölgeleri arasında sağlam bağlantı, in vivo. Ancak, nöral devre fonksiyonunun tek hücreli çözünürlüğü veren deneylerin gerçekleştirilmesi, bozulmamış beyindeki teknik zorluklarla sınırlıdır. In vivo hücre dışı elektrofizyoloji veya multifoton görüntüleme yöntemleri bozulmamış sinir sistemlerindeki aktiviteyi araştırmak için kullanılabilirken, farklı girdilerin nasıl entegre olduğunu yorumlamak veya eşik altı sinaptik girdileri ölçmek zor olmaya devam etmektedir. In vivo bütün hücre kayıtları bu sınırlamaların üstesinden gelmek ama gerçekleştirmek için zor, kolayca erişilebilen beyin bölgelerinde bile. Tek hücreli çözümlü deneylerin teknik zorlukları, beynin derinliklerinde bulunan bazı nöron popülasyonlarında veya canlı hücreleri bulmak için genetik araçlar gerektiren mekansal olarak dağınık popülasyonlarda (örn. optrode kaydı yla eşleştirilmiş kanaloidofinin genetik ekspresyonu) veya site etiketlemesinden sonra post-hoc histokimyasal tanımlamada (örn. nörotransmisyona özgü belirteçlerle) daha da artırılır. Beyin sapı ventral yüzeyine yakın diffüz bulunan olmak, medial olivocochlear (MOC) nöronlar yukarıdaki sınırlamalar muzdarip1, onları in vivo deney için erişim son derece zor hale.
Beyin dilimleri (~ 100-500 μm kalınlığı) uzun beyin devreleri çalışmak için kullanılmıştır, işitsel beyin sapı devredahil, aynı dilim içinde bulunan bağlı nöronların fiziksel ayrımı nedeniyle2,3,4,5,6,7,8,9. Çok daha kalın dilimler (>1 mm) kullanarak deneyler, ikili girdilerin medial superior zeytin10,11dahil olmak üzere üstün olivary kompleksi (SOC) alanlarında nasıl entegre olduğunu anlamak için diğer laboratuvarlarda kullanılmıştır. Bu dilimler, işitsel sinirin aksonlari (AN) dilim içinde bozulmadan kaldı ve cn sinaptik nörotransmitter salınımını başlatmak için elektriksel olarak uyarıldı, ilk derecede işitsel nöronların aktivitesini taklit olarak sese tepki verecekti. Bu kalın dilimlerin en büyük dezavantajlarından biri yama-kelepçe elektrofizyolojik kayıtlar (“yama”) için nöronların görünürlüğüdür. Bu alanda çok sayıda akson yaş 12 ile miyelinated hale olarak Patching giderek daha zor halegelir13,14,15, doku optik yoğun hale ve tipik bir, ince beyin dilimi bile nöronlar gizleme. Amacımız in vivo kayıtların devre bağlantısına daha çok benzeyen, ancak beyin dilimlerinde görsel güdümlü yama-kelepçe elektrofizyolojisinin yüksek verim ve yüksek çözünürlüklü kayıt yetenekleriyle in vitro preparatlar oluşturmaktır.
Laboratuvarımız, MOC nöronları da dahil olmak üzere işitsel efferent sistemin nöronların fizyolojisini araştırır. Bu kolinerjik nöronlar dış saç hücrelerinin aktivitesini modüle ederek koklea efferent geribildirim sağlamak (OHCs)16,17,18,19,20. Önceki çalışmalar da bu modülasyon koklea21,22,23,24,25,26 ve akustik travma27,28,29,30,31,32,33de kazanım kontrolü bir rol oynadığını göstermiştir . Farelerde, MOC nöronlar diffüz yamuk vücudun ventral çekirdeğinde yer almaktadır (VNTB) işitsel beyin sapı1. Grubumuz epifloresan aydınlatma altında beyin sapı dilimleri MOC nöronlar hedef tdTomato muhabiri fare hattı ile geçti ChAT-IRES-Cre fare hattı kullanmıştır. Biz MOC nöronlar trapez vücudun ipsilateral medial çekirdeğinden afferent inhibitör girdi almak gösterdi (MNTB), hangi heyecanlı, sırayla, küresel gür hücrelerden akson tarafından (GBC) kontralateral koklear çekirdeği (CN)34,35,36,37,38. Ayrıca, MOC nöronlar büyük olasılıkla kontralateral CN39,40,41T-stellat hücrelerinden uyarıcı giriş alırsınız. Birlikte ele alındığında, bu çalışmalar MOC nöronlar aynı (kontralateral) kulak tan türetilen hem uyarıcı ve inhibitör girdileri almak göstermektedir. Ancak, presinaptik nöronlar, ve MOC nöronlar üzerinde yakınsama aksonları, oldukça tipik bir koronal dilim hazırlanmasında tam olarak bozulmamış olması için birbirlerine yeterince yakın değildir. Sinaptik girdilerin MOC nöronlarına entegrasyonunun eylem potansiyeli ateşleme kalıplarını nasıl etkilediğini araştırmak için, yeni tanımlanan inhibisyona odaklanarak, bir kulaktan MOC nöronlarına kadar olan çeşitli afferentleri fizyolojik olarak en gerçekçi şekilde uyarabileceğimiz, ancak in vitro beyin dilimi deneylerinin teknik yararları ile birlikte bir hazırlık geliştirdik.
Kama dilimi, MOC nöronlarında devre entegrasyonunun araştırılması için tasarlanmış değiştirilmiş kalın bir dilim hazırlığıdır (Şekil 1A’daşematize). Dilimin kalın tarafında, kama işitsel sinir kopmuş aksonlar içerir (bundan sonra “işitsel sinir kökü” olarak adlandırılır) onlar CN çevre ve sinaps gelen beyin sapı girerken. İşitsel sinir kökü elektriksel nörotransmitter salınımı ve tamamen bozulmamış CN hücrelerinin sinaptik aktivasyon uyandırmak için uyarılmış olabilir42,43,44,45,46. Bu stimülasyon biçimi devre analizi için çeşitli faydaları vardır. İlk olarak, MOC nöronlarına afferent girdi sağlayan T-stellat ve GBC aksonları doğrudan uyarmak yerine, CN’de bol miktarda bulunan içsel devrelerin aktivasyonuna izin vermek için AN’yi uyarıyoruz. Bu devreler beyin boyunca hedeflerine CN nöronların çıkış modüle, MOC nöronlar dahil46,47,48,49,50,51. İkinci olarak, AN’den MOC nöronlarının CN upstream’ine kadar olan afferent devrelerin polisinetik aktivasyonu, işitsel stimülasyon sırasında in vivo olduğu gibi daha doğal aktivasyon zamanlaması na ve plastisitenin bu sinapslarda oluşmasına olanak sağlar. Üçüncü olarak, an aktivitesini taklit etmek için stimülasyon kalıplarımızı değiştirebiliriz. Son olarak, MOC nöronlar için hem uyarıcı ve inhibitör monaural projeksiyonlar kama dilim bozulmamış, ve bunların entegrasyonu yama-kelepçe elektrofizyoloji hassasiyeti ile bir MOC nöron ölçülebilir. Bir bütün olarak, bu aktivasyon şeması tipik bir beyin dilimi hazırlık ile karşılaştırıldığında MOC nöronlar için daha sağlam bir devre sağlar. Bu beyin sapı kama dilimi de lateral superior zeytin, üstün oliyum çekirdeği ve medial üstün zeytin10, 11,52,53,54,55,56dahil olmak üzere ipsilateral MNTB inhibitör girdi almak diğer işitsel alanları araştırmak için kullanılabilir. Bizim özel hazırlık ötesinde, bu dilimleme yöntemi kullanılabilir veya uzun menzilli girdilerin bağlantı bakımı ve tek hücreli çözünürlükte elektrofizyoloji veya görüntüleme teknikleri çeşitli nöronların görselleştirme iyileştirilmesi yararları ile diğer sistemleri değerlendirmek için değiştirilebilir.
Bu protokol yaklaşık 15 ° yatırılabilir bir vibratom sahne veya platform kullanımını gerektirir. Burada “sahne” bir içbükey manyetik “sahne tabanı yerleştirilir kavisli bir alt ile metal bir disk olduğu bir ticari olarak kullanılabilir 2 parçalı manyetik sahne kullanın.” Daha sonra dilim açısını ayarlamak için aşama kaydırılabilir. Sahne tabanındaki eşmerkezli daireler açıyı tekrarlı olarak tahmin etmek için kullanılır. Sahne ve sahne tabanı dilimleme odasına yerleştirilir, burada manyetik sahne tabanı da döndürülebilir.
Burada bir kama dilimi olarak tanımlanan dilimleme prosedürü bozulmamış presinaptik nöronal devre korumak için güçlü, ancak nöronal fonksiyonun analizi için beyin dilimi deney erişilebilirliği ile. Devre analizine hazırlık kullanımını en üst düzeye çıkarmak için birkaç ilk adımda büyük özen gerekir. Kamanın boyutları, hem presinaptik çekirdeklerin hem de aksonal projeksiyonlarının hazırlanan kama dilimi içinde yer aldığını doğrulamak için integral olan histolojik inceleme kullan?…
The authors have nothing to disclose.
Bu araştırma NIH, NIDCD, Z01 DC000091 (CJCW) Intramural Araştırma Programı tarafından desteklenmiştir.
Experimental Preparations | |||
Agar, powder | Fisher Scientific | BP1423500 | 4% agar block used to stabilize brain tissue during vibratome sectioning |
AlexaFluor Hydrazide 488 | Invitrogen | A10436 | Fluorophore used in internal solution to confirm successful MOC neuron patch |
Analytical Balance | Geneses Scientific (Intramalls) | AV114 | Weighing chemicals |
Double edged razor blade | Ted Pella | 121-6 | Vibratome cutting blade |
Kynurenic acid (5g) | Sigma Aldrich | K3375-5G | Slicing ACSF additive used to reduce neuron activity during dissection and slicing in order to improve tissue health for patch clamping |
pH Meter | Fisher Scientific (Intramalls) | 13-620-451 | Solution pH tester |
Plastic petri dishes 100mm dia X 20mm | Fisher Scientific (Intramalls) | 12-556-002 | 4% Agar Prep |
Stirring Hotplate | Fisher Scientific (Intramalls) | 11-500-150 | Heating for 4% Agar preparation |
Dissection and Slicing | |||
Biocytin | Sigma Aldrich | B4261-250MG | Chemical used for axonal tracing (conjugated to Streptavidin 488) |
Dissecting Microscope | Amscope | SM-1BN | For precision dissection during brain removal |
Dumont #5 Forceps | Fine Science Tools | 11252-20 | Fine forceps dissection tool |
Economy tweezers #3 | WPI | 501976 | Forceps dissection tool |
Glass Petri Dish 150mm dia x 15mm H | Fisher Scientific (Intramalls) | 08-747E | Dissection dish |
Interface paper (203 X 254mm PCTE Membrane 10um) | Thomas Scientific | 1220823 | Slice incubation/biocytin application |
Leica VT1200S Vibratome | Leica | 1491200S001 | Vibratome for wedge slice sectioning |
Mayo scissors | Roboz | RS-6872 | Dissection tool |
Single-edged carbon steel blades | Fisher Scientific (Intramalls) | 12-640 | Razor blade for dissection |
Specimen disc, orienting | Leica | 14048142068 | Specialized vibratome stage for reproducible tilting |
Spoonula | FisherSci | 14-375-10 | Dissection tool |
Super Glue | Newegg | 15187 | Used for glueing tissue to vibratome stage |
Vannas Spring Scissors | Fine Science Tools | 91500-09 | Dissection tool |
Electrophysiology | |||
A1R Upright Confocal Microscope | Nikon Instruments | Electrophysiology and imaging microscope, can be any microscope compatible with electrophysiology | |
Electrode Borosilicate glass w/ Filament OD 1.5mm, ID 1.1mm, 10 cm long | Sutter Instrument | BF150-110-10 | Patch clamping pipette glass |
Electrode Filler MicroFil | WPI | CMF20G | Patch electrode pipette filler |
In-line solution heater | Warner Instruments (GSAdvantage) | SH-27B | Slice perfusion system heater |
Multi-Micromanipulator Systems | Sutter Intruments | MPC-200 with MP285 | Micromanipulators for patch clamp and stimulation electrode placement |
P-1000 horizontal pipette puller for glass micropipettes | Sutter instruments | FG-P1000 | Patch clamp pipetter puller |
Patch-clamp amplifier and Software | HEKA | EPC-10 / Patchmaster Next | Can be any amplifier/software |
Recording Chamber | Warner Instruments | RC26G | Slice "bath" during recording |
Recording Chamber Harp | Warner Instruments | 640253 | Stablizes slice during electrophysiology recording |
Slice Incubation Chamber | Custom Build | Heated, oxygenated holding chamber for slices during recovery after slicing | |
Stimulus isolation unit | A.M.P.I. | Iso-Flex | Stimulus isolation unit for electrophysiology |
Syringe 60CC | Fischer Scientific (Intramalls) | 14-820-11 | Electrophysiology perfusion fluid handling |
Temperature controller | Warner Instruments (GSAdvantage) | TC-324C | Slice perfusion system temperature controller |
Tubing 1/8 OD 1/16 ID | Fischer Scientific (Intramalls) | 14-171-129 | Electrophysiology perfusion fluid handling |
Tugsten concentric bipolar microelectrode | WPI | TM33CCINS | Stimulating electrode for electrophysiology |
Histology | |||
24 well Plate | Fisher Scientific (Intramalls) | 12-556006 | Histology slice collection and immunostaining |
Alexa Fluor 488 Streptavidin | Jackson Immuno labs | 016-540-084 | Secondary antibody for biocytin visualization |
Corning Orbital Shaker | Sigma | CLS6780FP | Shaker for immunohistochemistry agitation |
Cresyl Violet Acetate | Sigma Aldrich (Intramalls) | C5042-10G | Cellular stain for histology |
Disposable Microtome Blades | Fisher Scientific | 22-210-052 | Sliding microtome blade |
Filter-syringe Nalgene 4mm Cellulose Acetate 0.2um | Fisher Scientific (Intramalls) | 09-740-34A | Syringe filter for filling recording pipettes with internal solution |
Fluoromount-G Slide Mounting Medium | Fisher Scientific | OB100-01 | Immunohistochemistry fluorescence mounting medium |
glass slide staining dish with rack | Fisher Scientific (Intramalls) | 08-812 | Cresyl Violet staining chamber |
Microm HM450 Sliding Microtome | ThermoFisher | 910020 | Freezing microtome for histology |
Microscope Cover Glasses: Rectangles 50mm X 24mm | Fisher Scientific (Intramalls) | 12-543D | Histochemistry slide cover glass |
Permount mounting medium | Fisher Scientific | SP15-100 | Cresyl violet section mounting medium |
Superfrost Slides | Fisher Scientific | 22-034980 | Histology slides |