Este protocolo descreve uma técnica crônica de implantação de janelas cranianas que pode ser usada para imagens longitudinais de estruturas neuro-glio-vasculares, interações e função em condições saudáveis e doentes. Serve como uma alternativa complementar à abordagem de imagem transcranária que, embora muitas vezes preferida, possui algumas limitações críticas.
O sistema nervoso central (SNC) é regulado por uma complexa interação de células neuronais, gliais, estrômicas e vasculares que facilitam sua função adequada. Embora estudar essas células isoladamente in vitro ou juntos ex vivo fornece informações fisiológicas úteis; características salientes da fisiologia celular neural farão falta em tais contextos. Portanto, há a necessidade de estudar células neurais em seu ambiente in vivo nativo. O protocolo aqui detalhado descreve a imagem repetitiva in vivo de duas fótons de células neurais no córtex roedor como uma ferramenta para visualizar e estudar células específicas durante longos períodos de tempo de horas a meses. Descrevemos em detalhes o uso da vasculatura cerebral grosseiramente estável como um mapa grosseiro ou dendritos fluorescentes rotulados como um bom mapa de regiões cerebrais selecionadas de interesse. Usando esses mapas como uma chave visual, mostramos como as células neurais podem ser precisamente realocadas para imagens in vivo repetitivas subsequentes. Utilizando exemplos de imagens in vivo de microglia fluorescentes, neurônios e células NG2+ , este protocolo demonstra a capacidade desta técnica de permitir a visualização repetitiva da dinâmica celular na mesma localização cerebral por longos períodos de tempo, que podem ajudar ainda mais na compreensão das respostas estruturais e funcionais dessas células na fisiologia normal ou seguindo insultos patológicos. Quando necessário, essa abordagem pode ser acoplada à imagem funcional de células neurais, por exemplo, com imagem de cálcio. Essa abordagem é especialmente uma técnica poderosa para visualizar a interação física entre diferentes tipos celulares do CNS in vivo quando modelos genéticos de camundongos ou corantes específicos com marcas fluorescentes distintas para rotular as células de interesse estão disponíveis.
O sistema nervoso central (SNC) é regido por uma complexa interação entre vários tipos de células residentes, incluindo neurônios, glia e células associadas a vasos. Tradicionalmente, as células neurais eram estudadas em tecidos cerebrais isolados, co-cultivados1,,2,,3,,4,5 (in vitro) ou tecido cerebral exsequipado (ex vivo)6,,7,,8,,9,,10 contextos. No entanto, é necessário entender melhor o comportamento das células neurais e as interações no ambiente nativo do cérebro intacto in vivo. Neste protocolo, descrevemos um método para mapear regiões in vivo de interesse e reimagem precisamente essas regiões em futuras sessões de imagem para acompanhar as interações complexas entre os vários tipos de células CNS ao longo de longos períodos de tempo.
O desenvolvimento de abordagens de imagem in vivo proporcionou ganhos significativos para a compreensão adequada da função neural11,,12,,13,14,,15. Especificamente, essas abordagens oferecem várias vantagens em relação às abordagens in vitro e ex vivo tradicionais. Primeiro, os sistemas de imagem in vivo possuem componentes fisiologicamente relevantes de células e tecidos, como a vasculatura com o repertório completo das interações celulares para proporcionar uma compreensão completa da fisiologia da rede neural. Em segundo lugar, achados recentes sugerem que, quando removidas de seu ambiente nativo, certas células neurais (como a microglia) perdem características importantes de sua identidade e,portanto,fisiologia16,17 que podem ser preservadas no cenário in vivo. Em terceiro lugar, os sistemas de imagem in vivo oferecem a oportunidade de investigações longitudinais estáveis de semanas a meses para estudar as interações celulares do CNS. Finalmente, dadas as evidências crescentes de contribuições do sistema imunológico periférico18,19 e do microbioma20,21 na fisiologia do CNS, os sistemas in vivo fornecem uma plataforma para interrogar tais contribuições e efeitos sobre as células CNS. Assim, abordagens que empregam imagens longitudinais in vivo para estudar fisiologia neuroi imune e interações em estados saudáveis, feridos e doentes são uma grande adição complementar às abordagens tradicionais.
Neste protocolo, descrevemos uma abordagem confiável para a imagem de diferentes tipos de células no cérebro, incluindo microglia, neurônios e células NG2+ como exemplos. Duas abordagens para visualizar células neurais in vivo foram desenvolvidas: a aproximação do crânio diluído e o crânio aberto com uma aproximação da janela craniana. Embora abordagens finas do crânio estejam em uso e sejam preferidas porque superam algumas das desvantagens da abordagem do crânio aberto, como ativação celular gliana, dinâmica da coluna vertebral mais alta que fisiológica e o uso de agentes anti-inflamatórios22,,23,,24,,25, abordagens finas do crânio também mostram algumas desvantagens críticas. Em primeiro lugar, o procedimento de afinamento é um procedimento muito delicado que muitos pesquisadores acham difícil de aperfeiçoar especialmente quando o diluir é necessário. Este é o caso porque muitas vezes é difícil para os experimentadores verificar que eles diminuíram o crânio a uma profundidade de ~20 μm. Em segundo lugar, para comparações adequadas entre camundongos, o afinamento precisaria ser idêntico e uma variedade de sucesso de afinamento entre sessões de imagem ou camundongos poderia complicar a visualização de estruturas neurais. Em terceiro lugar, quando empregados para imagens longitudinais, animais com crânios finos só podem ser usados para um número limitado de sessões quando o diluir do crânio é empregado. Por diante, uma vez que parte do tecido ósseo ainda permanece, a clareza em profundidade da imagem pode ser comprometida a partir da abordagem do crânio diluído permitindo uma grande visualização de regiões mais superficiais, mas não tanto com regiões mais profundas. À luz disso, estruturas cerebrais mais profundas, como o hipocampo, não podem ser imagens com sucesso com a aproximação do crânio diluído. Essas considerações levantam a necessidade de abordagens alternativas e complementares que possam superar essas preocupações.
Alternativa à abordagem do crânio diluído, a abordagem de implantação da janela aberta do crânio usa um procedimento no qual o crânio é substituído por uma mancha de vidro opticamente clara. Isso permite um número quase ilimitado de sessões de imagem. Além disso, dada a substituição do crânio pelo deslizamento de tampa de vidro, este método permite uma janela de visualização clara de células cerebrais fluorescentes marcadas por longos períodos de horas a meses e, portanto, pode ser empregado para estudar a atividade celular e interações relevantes para fisiologia, envelhecimento e patologia.
No geral, detalhamos etapas que podem ser seguidas para fazer o implante de janelas cranianas crônicas através de uma craniotomia estereotaxa que permite imagens in vivo de regiões cerebrais de interesse. Também descrevemos como a vasculatura cerebral grosseiramente estável ou os dendritos fluorescentes rotulados poderiam ser usados para gerar um mapa grosseiro ou fino, respectivamente, das regiões cerebrais de interesse. Esta abordagem pode então ser usada para imagens repetidas ao longo de várias sessões. A importância dessa técnica, portanto, reside em sua capacidade de imaginar as mudanças ou estase a longo prazo em elementos cerebrais, incluindo o arranjo, morfologia e interações dos diferentes tipos celulares.
O advento da imagem in vivo de dois fótons abriu oportunidades para explorar a infinidade de interações celulares e dinâmicas que ocorrem no cérebro saudável. Estudos iniciais se concentraram no uso da abordagem da craniotomia do crânio aberto para dendritos neuronais de imagem por imagem aguda e crônica37,38. Isso também pode ser usado para elucidar interações neuroimunes no cérebro. Este protocolo descreve um método para a imagem confiável de cél…
The authors have nothing to disclose.
Agradecemos aos membros do laboratório Eyo por discutirem as ideias apresentadas neste manuscrito. Agradecemos ao Dr. Justin Rustenhoven do Laboratório Kipnis da Universidade da Virgínia pelo presente de ratos NG2DsRed 33. Este trabalho é apoiado por financiamento do Instituto Nacional de Distúrbios Neurológicos e AVC do Instituto Nacional de Saúde para a U.B.E (K22 NS104392).
Coverglass (3mm) | Warner Instruments | 64-0726 | |
Cyanoacrylate glue (Krazy Glue) | Amazon | https://www.amazon.com/Krazy-Glue-Original-Purpose-Instant/dp/B07GSF31WZ/ref=sr_1_2?keywords=krazy+glue&qid=1583856837&s=pet-supplies&sr=8-2 | |
Demi Ultra LED Curing Light System | Dental Health Products, Inc | 910860-1 | |
Dental Drill | Osada: www.osadausa.edu | EXL-M40 | |
Drill Bit | Fine Science Tools | #19008-07 | |
Eye Ointment | Henry Schien | 1338333 | |
iBond Total Etch (Primer glue) | Chase Dental Supply (Heraeus Kulzer) | 66040094 | |
Rhodamine B | Millipore Sigma | 81-88-9 (R6626) | |
Tetris Evoflow glue (Final glue) | Top Dent (Ivoclar Vivadent) | #595956 | |
Wahl Brav Mini+ | Amazon | https://www.amazon.com/Wahl-Professional-Animal-BravMini-41590-0438/dp/B00IN24ILE/ref=asc_df_B00IN24ILE/?tag=hyprod-20&linkCode=df0&hvadid=167141013968&hvpos=&hvnetw=g&hvrand=12368793083893626704&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-332197544154&psc=1 |