本文描述了通过人类自然杀伤细胞中的治疗性抗体研究FcγRIIIa驱动事件的方案。该人工刺激平台允许询问下游效应器功能,例如脱颗粒,趋化因子/细胞因子产生以及由参与结合的抗体的FcγRIIIa和Fc部分介导的信号通路。
治疗性抗体临床疗效的一种作用机制是促进免疫相关功能,如细胞因子分泌和细胞毒性,由自然杀伤(NK)细胞上表达的FcγRIIIa(CD16)驱动。这些观察结果导致研究重点是增加Fc受体介导事件的方法,其中包括去除在抗体的Fc部分发现的岩藻糖部分。进一步的研究已经阐明了信号传导,细胞过程和细胞毒性特征的机制变化,这些变化增加了酸锌酰化抗体的ADCC活性。此外,其他研究表明,这些抗体与小分子抑制剂联合使用具有潜在的益处。这些实验证明了在组合环境中使用酸根基化抗体的益处背后的分子和细胞机制。其中许多观察结果基于人工体外活化测定,其中人NK细胞上的FcγRIIIa被治疗性抗体激活。该测定为研究下游效应NK细胞功能(如细胞因子产生和脱颗粒)提供了灵活性。此外,该测定已被用于询问信号通路并鉴定可调节或用作生物标志物的分子。最后,其他治疗分子(即小分子抑制剂)已被添加到系统中,以提供对这些治疗药物与治疗性抗体组合的见解,这在当前的临床空间中至关重要。本手稿旨在为进行这种人工NK细胞活化测定提供技术基础。该协议展示了细胞活化的关键步骤以及潜在的下游应用,从功能读数到更机械的观察。
在过去的几十年里,人们一直非常关注使用抗体开发靶向癌症疗法。治疗性抗体,如曲妥珠单抗和利妥昔单抗,通过多种机制运作,包括防止信号分子的二聚化和免疫系统的动员1,2。后者是通过抗体依赖性细胞毒性(ADCC)完成的,其中称为自然杀伤(NK)细胞的淋巴细胞通过抗体1,2带入靶细胞。通过将细胞彼此靠近放置,NK细胞被激活,并且可以通过分泌效应分子3来裂解肿瘤/靶细胞。
在分子水平上,抗体的Fab部分结合其在肿瘤细胞上表达的同源抗原,而其Fc部分与NK细胞上表达的FcγRIIIa结合,使两个细胞结合在一起1,2。在FcγRIIIa参与后,信号通路(即MAPK和PI3K途径)驱动细胞骨架重排,细胞因子产生和细胞毒性4,5,6,7,8,9。因此,ADCC是由NK细胞和抗体介导的FcγRIIIa驱动的事件。
由于ADCC被认为是这些治疗性抗体的作用机制,研究人员寻找通过修饰抗体来增加ADCC的方法。一项修改是去除附着在天冬酰胺297上的寡糖链上的岩藻糖,这增加了抗体Fc部分与FcγRIIIa10,11,12的结合亲和力。在动物研究中,与用岩藻糖基化对应物13处理的小鼠相比,接受酸根基化抗体的小鼠表现出较慢的肿瘤生长。更重要的是,在诊断为慢性淋巴细胞白血病或滤泡性淋巴瘤的患者中,obinutuzumab(例如,Gazyva,一种批准的阿福球菌基化抗体)相对于利妥昔单抗(例如,Rituxan,其岩藻糖基化对应物)显示出更好的疗效14,15。
直到最近,通过芳香糖基化抗体增加ADCC的机制尚不清楚。结合有许多研究计划开发治疗性抗体以利用FcγRIIIa驱动的机制靶向癌细胞的事实,必须开发体外测定来检查这些抗体促进的分子和细胞方面。这提供了对作用机制以及发现生物标志物的潜力的基本理解。因此,开发了一种人工活化测定法,以研究抗体依赖性FcγRIIIa介导的功能以及信号传导和细胞特征8。通过这些研究,已经阐明了硫代葡萄糖基化抗体功效增加的机制,其中增强的结合亲和力增加信号传导以促进细胞特性和细胞毒性特征8。
目前临床试验的趋势是使用治疗分子16的组合。最常见的突变途径之一是PI3K途径,这促使人们努力开发靶向该途径17,18,19,20的小分子抑制剂。然而,这些分子如何与治疗性抗体联合作用是相对未知的,特别是在抑制剂可能影响需要PI3K途径才能发挥作用的分子的组合中,例如由治疗性抗体驱动的分子。
为此,用于化武菌丝化抗体研究的体外测定也用于研究PI3K抑制剂和治疗性抗体的组合。这些研究定义了PI3K抑制对治疗性抗体PI3K驱动事件的分子特征,并描述了酸洗酚糖基化抗体如何抵消这种信号传导的损失9。这些发现是相关的,因为它们为设计临床试验提供了潜在的指导。此外,这一系列实验还导致了首次描述的PI3K信号通路动力学调控的观察结果,以调节趋化因子/细胞因子的转录和产生,这可能作为潜在的生物标志物9。
用于定义上述信号传导和细胞特征的人工体外活化测定已被设计用于研究在没有靶细胞的情况下由抗体介导的NK细胞中的FcγRIIIa驱动事件。系统中没有靶细胞,观察到的所有信号传导事件和功能都可以直接归因于NK细胞。在所提出的测定中,将抗体加入到纯化的NK细胞中,此时Fc部分结合FcγRIIIa。随后是使用抗人κ轻链抗体对抗体进行交联,以人为地刺激细胞。抗体的交联模拟靶抗原的结合,以产生引发下游事件的信号平台。根据刺激的长度,研究人员可以评估信号传导,细胞过程,细胞毒性特征和效应器功能8,9。同样,当抗体与其他分子结合时,该测定也为研究这些事件提供了灵活性9。
总之,这是一种理想的体外测定,用于研究通过其FcγRIIIa引发NK细胞反应的治疗性抗体,作为作用机制的一部分。该协议描述了这种体外活化测定的性能,并提供了对可以执行的各种读数的见解。
该协议描述了研究由抗体介导的NK细胞中FcγRIIIa驱动事件的方法。这些技术允许评估治疗性抗体的潜在作用机制,建议为ADCC1,2。具体而言,这些方法为研究负责ADCC的潜在分子信号通路和细胞过程提供了灵活性。它们还允许观察其他效应器功能,如趋化因子和细胞因子的产生。此外,这些方法允许鉴定可能靶向调节ADCC的潜在生物标志物和分子。
该协议的基础是在没有靶细胞的情况下通过FcγRIIIa用抗体对NK细胞进行人工刺激。抗体结合的靶细胞通常用于促进Fc受体的交联,以形成驱动信号传导和下游效应的平台。相反,在该测定中使用抗人κ轻链抗体完成交联,绕过对靶细胞刺激NK细胞的需求。如果没有靶细胞,结果和观察结果可以直接归因于NK细胞,假设纯化过程是成功的。
重要的是,使用抗人κ轻链抗体交联抗体不会干扰Fc部分对FcγRIIIa的结合亲和力,这种相互作用决定了反应的强度10,11,12,13。事实上,研究表明,阿拉伯冰山苷化抗体增加ADCC,因为它们对FcγRIIIa10,11,12,13的亲和力增加。随后的研究表明,这种增加的亲和力不受抗人κ轻链二抗替代品的影响,可用于研究ADCC8增加的基础。为确保NK细胞通过抗体的交联受到刺激,应包括两个阴性对照:1)仅治疗性抗体,没有二级抗人κ轻链抗体,以及2)仅二级抗人κ轻链抗体。在这两种情况下,都不应生成任何信号或效应器功能。
该方法还为研究治疗性抗体对小分子抑制剂的影响提供了灵活性。可以在与二抗交联之前加入抑制剂,以便抑制剂有时间接触其靶标。然而,应进行研究以确定抑制剂预处理的最佳时间;因此,抑制剂对刺激具有最大的作用。话虽如此,研究人员也可能选择研究刺激后抑制剂的作用。在这种情况下,可以在交联后添加抑制剂,以研究它如何影响已经产生的信号和过程。总之,这里描述的方法为研究不同小分子抑制剂与治疗性抗体的组合效应提供了最大的灵活性。
如上所述,刺激后可以执行各种读数。可以使用来自不同供应商的SDS-PAGE和膜转移系统进行蛋白质印迹以研究信号传导。同样,也可以使用各种RNA提取方法,逆转录试剂和基因表达仪器来评估基因表达。最后,还可以进行细胞内或细胞外蛋白的染色,其中可以使用不同的流式细胞仪分析样品。对于细胞内细胞因子和CD107a染色(步骤3.4,可同时评估),应添加莫宁酶和/或brefeldin A以最大化信号。我们对每个实验目标使用了不同的平台,并且仍然观察到类似的结果。因此,根据研究情况,该方法可以与各种试剂,平台和仪器相辅相成。
刺激的交联时间将取决于研究的目标。如果需要信号传导研究,典型的交联刺激时间在2分钟至10分钟之间,pAKT,pPRAS40和pERK1 / 2在2分钟时达到积累峰值,并在10分钟后消失8,9。对于功能研究(即涉及趋化因子/细胞因子产生的研究),必须刺激细胞至少30分钟,具体取决于分析物9。基因表达分析通常还需要30分钟的刺激9。使用RANTES基因表达作为读数时应谨慎行事,因为RANTES mRNA的产生与转录激活无关,因为它已经储存在细胞中,以便在刺激时及时翻译和释放蛋白质25。相反,脱颗粒需要至少3小时的刺激。尽管有这些一般观察结果,研究人员仍应进行动力学研究,以确定特定目标分子的最佳刺激时间。
同样,研究人员应该滴定感兴趣的抗体以确定最佳浓度,因为具有不同特异性的抗体与具有不同亲和力的FcγRIIIa结合,即使它们具有相同的同种型。例如,利妥昔单抗和曲妥珠单抗都是IgG1同种型,但曲妥珠单抗与FcγRIIIa的缬氨酸多态性结合比利妥昔单抗26,27更强。这种亲和力的差异可能导致功能差异,例如脱颗粒,如已发表的研究8中观察到的那样。
确定最佳浓度也很重要,因为抗体的Fc部分对FcγRIIIa具有低亲和力。这可能导致洗掉抗体,因为该协议包括抗体与Fc受体结合后的洗涤步骤。这可能导致测定中缺乏敏感性,正如刺激后CD107a阳性细胞的低百分比所表明的那样(图5)。然而,确定最佳浓度应提供信心,即结果不是由于缺乏敏感性。此外,细胞在生化和功能测定中被明显激活,这些测定使用体积细胞而不是单细胞读数(图2,图3,图6)。
该协议也是有限的,因为它不完全模仿生理上发生的事情。使用的二级抗人K抗体是模仿细胞上表达的靶抗原产生的交联。在这里,添加饱和量的二抗以产生最大反应。然而,不同的靶细胞会表达不同水平的抗原,这将影响交联和反应。目前,该平台尚未优化以模仿不同抗原表达水平的影响。
进行这些实验时要考虑的另一个因素是由于个体之间不同的遗传背景和免疫学历史,供体与供体之间的变异性。因此,在比较来自不同供体的NK细胞反应时,必须注意相同的测定。同样,在使用不同的捐助方时,只应作出一般性结论。
总而言之,所描述的方法是一种简单而灵活的刺激平台,用于研究NK细胞中抗体驱动的FcγRIIIa介导的事件。它已被用于更好地了解使用阿福球菌基化抗体8观察到的ADCC增加和功效的基础。该方法还被用于结合治疗性抗体和PI3K小分子抑制剂9的研究中。此外,还鉴定出由pS6调节的先前未知的趋化因子和细胞因子产生机制9。因此,使用这种人工信号平台的未来研究可以进一步阐明由FcγRIIIa驱动的效应器功能的调节机制。它还可能潜在地识别对这些机制重要的新分子,以及已知分子的新作用。
The authors have nothing to disclose.
作者感谢James Lee和Christopher Ng对本文稿的评论和编辑。
16% paraformaldehyde | Thermo Fisher Scientific | 50-980-487 | |
Alexa Fluor 488 phalloidin | Thermo Fisher Scientific | A12379 | |
anti-mouse HRP antibody | Cell Signaling Technologies | 7076 | |
AutoMACS instrument | Miltenyi | NK cell isolation method; another isolation instrument may be used | |
B-mercaptoethanol | Thermo Fisher Scientific | 21985023 | |
Bovine Serum Albumin Fraction V, fatty acid free | Millipore Sigma | 10775835001 | |
CD107a APC antibody | Biolegend | 328620 | |
Cytokine 30-Plex Human Panel | Thermo Fisher Scientific | LHC6003M | chemokine/cytokine method; another chemokine/cytokine analysis method may be used |
FBS | Hyclone | SH30071.01 | |
Goat anti-human κ light chain antibody | Millipore Sigma | AP502 | |
Halt Protease and Phosphatase Inhibitor Cocktail | Thermo Fisher Scientific | 78440 | |
HEPES | Thermo Fisher Scientific | 15630080 | |
High Capacity cDNA Reverse Transcription Kit | Thermo Fisher Scientific | 4368814 | cDNA transcription method; used according to manufacturer's protocol |
IFN-ɣ primers | Thermo Fisher Scientific | Hs00989291_m1 | |
Leukosep tube (50 ml conical with porous barrier) | Greiner | 227290 | |
Lymphoprep (density gradient medium) | Stemcell | 7851 | |
MIP-1⍺ primers | Thermo Fisher Scientific | Hs00234142_m1 | |
MIP-1β primers | Thermo Fisher Scientific | Hs99999148_m1 | |
NK cell isolation kit | Miltenyi | 130-092-657 | NK cell isolation kit; another isolation kit may be used |
NuPAGE 4-12% Bis-Tris Protein Gels | Thermo Fisher Scientific | another protein separation system may be used | |
pAKT (S473) antibody | Cell Signaling Technologies | 4060 | |
pERK1/2 antibody | Cell Signaling Technologies | 4370 | |
pPRAS40 antibody | Cell Signaling Technologies | 13175 | |
PVDF membrane | Thermo Fisher Scientific | nitrocellulose may be used | |
RANTES primers | Thermo Fisher Scientific | Hs00982282_m1 | |
RIPA buffer | Millipore Sigma | R0278 | |
RPMI w/glutamax | Thermo Fisher Scientific | 61870 | |
Sodium pyruvate | Thermo Fisher Scientific | 11360070 | |
TNF-⍺ primers | Thermo Fisher Scientific | Hs00174128_m1 | |
Triton X-100 | Thermo Fisher Scientific | 85111 | |
TRIzol | Thermo Fisher Scientific | 15596018 | RNA isolation method; used according to manufacturer's protocol |
Xcell Blot II Transfer Module | Thermo Fisher Scientific | another protein separation system may be used | |
Xcell SureLock Protein Gel Electrophoresis Chamber System | Thermo Fisher Scientific | another protein separation system may be used | |
β-actin HRP antibody | Abcam | ab6721 | |
β-actin primers | Thermo Fisher Scientific | Hs00982282_m1 |