逆紡糸円盤共焦点顕微鏡によるマウス小腸のインビタルイメージングを用いてGFP標識γΔ IElsを可視化する方法について述べた。この技術は、粘膜内の生細胞の追跡を最大4時間可能にし、腸内免疫上皮相互作用の様々な調査に使用することができる。
γδT細胞受容体(γδ IEL)を発現する上皮内リンパ球は、腸上皮の免疫サーベイランスにおいて重要な役割を果たす。γΔT細胞受容体に対する決定的なリガンドの欠如により、γΔ IEL活性化の調節と生体内での機能に関する我々の理解は限られている。このため、γδ IEL機能の調節に関与するシグナル伝達経路と、これらの細胞の局所微小環境への応答性を調知るための代替戦略の開発が必要である。γδ IELは病原体の転移を制限することが広く理解されていますが、インビタルイメージングの使用は、定常状態および侵襲性病原体に応答するIEL/上皮相互作用の時空間的ダイナミクスを理解するために重要です。本明細書では、逆紡糸ディスク共焦点レーザー顕微鏡を用いてGFPγδT細胞レポーターマウスの小腸粘膜におけるIEL移動挙動を可視化するためのプロトコルを提示する。このアプローチの最大イメージング深さは、2光子レーザー走査顕微鏡の使用に比べて制限されていますが、回転ディスク共焦点レーザー顕微鏡検査は、光漂白を低減した高速画像集録の利点を提供し、光の損傷。4D画像解析ソフトウェアを使用して、T細胞監視挙動と隣接細胞との相互作用を実験操作後に解析し、腸粘膜内のIEL活性化と機能に関するさらなる洞察を提供します。
上皮内リンパ球(IEL)は腸上皮内に位置し、横細胞間空間1の地下膜と隣接する上皮細胞の間の両方に見出される。5-10上皮細胞ごとに約1つのIELがあります。これらのIELsは、腸上皮バリア2の大きな広がりの免疫監視を提供するセンチネルとして機能する。γΔ T細胞受容体(TCR)を発現するIELは、マウス小腸におけるIEL集団全体の60%までを占める。γΔT細胞欠損マウスの研究は、腸損傷、炎症および感染3、4、5に応答してこれらの細胞の主に保護的役割を示す。Tcrdノックアウトマウス6の生成にもかかわらず、γδ IEL生物学の我々の理解は、γδ TCRによって認識されたリガンドがまだ同定されていないという事実のために、依然として限定的なままである。その結果、この細胞集団を研究するためのツールが不足し、生理的および病理学的条件下でのγΔ TCR活性化および機能の役割を調べることを困難にしている。このギャップを埋めるために、生体イメージング技術を開発し、β(IEL)の移動挙動や近隣腸細胞との相互作用を可視化し、生体内のβIEL機能と外部刺激に対する応答性に関するさらなる洞察を提供する手段として開発しました。
過去10年間にわたり、インビタルイメージングは、上皮細胞脱落8、上皮バリア機能の調節を含む腸生物学の複数の面に関与する分子事象に関する我々の理解を著しく拡大した9 ,10, 明るさ内容の骨髄細胞サンプリング11,12, 宿主微生物相互作用11,13,14,15,16.IEL生物学の文脈では、生体内顕微鏡の使用は、IEL運動の時空間ダイナミクスと、その監視行動を媒振する要因に光を当てた13,14,15, 16.核GFP発現17でβ(IELS)を標識するTcrdH2BeGFP(TcrdEGFP)レポーターマウスの開発により、γΔ Ielsは上皮内で非常に運動性が高く、微生物に反応する独自の監視挙動を示すことを明らかにした。感染17,13,14.最近、細胞質中のGFPを発現する別のβΔT細胞レポーターマウス(Tcrd-GDL)が開発され、細胞全体の可視化を可能にした。同様の方法論は、IEL運動性19、20のダイナミクス上のGタンパク質結合受容体(GPCR)-18および-55などの特定のケモカイン受容体の要件を調査するために使用されてきた。細胞特異的レポーターが存在しない場合、CD8αに対する蛍光共役抗体は、生体内19、20におけるIEL運動性を可視化および追跡するために使用された。2光子レーザースキャニング顕微鏡は、一般的にイントラビタルイメージングに使用されますが、スピニングディスク共焦点レーザー顕微鏡を使用すると、バックグラウンドノイズを最小限に抑えて高速かつ高解像度のマルチチャンネル画像をキャプチャする独自の利点があります。この技術は、腸粘膜の複雑な微小環境内の免疫/上皮相互作用の時空間的ダイナミクスを解明するのに理想的である。さらに、様々なトランスジェニックおよび/またはノックアウトマウスモデルの使用を通じて、これらの研究は腸内免疫および/または上皮細胞機能の分子調節に関する洞察を提供することができる。
生体内顕微鏡技術の開発は、細胞内構造の再編成を観察する前例のない機会を提供している8,9,22, 細胞細胞相互作用12, 25および細胞移動挙動13、14、15、16、26は、そうでなければアクセスできない組織において。</s…
The authors have nothing to disclose.
この研究は、NIH R21 AI143892、ニュージャージー州保健財団助成金、ブッシュバイオメディカルグラント(KLE)によってサポートされています。私たちは、原稿を編集し、代表的な結果に示されたデータを提供する彼女の支援のためにマドレーヌHuに感謝します。
35mm dish, No. 1.5 Coverslip | MatTek | P35G-1.5-14-C | |
Alexa Fluor 633 Hydrazide | Invitrogen | A30634 | |
BD PrecisionGlide Hypodermic needles – 27g | Thermo Fisher Scientific | 14-826-48 | |
BD Slip Tip Sterile Syringe – 1 ml | Thermo Fisher Scientific | 14-823-434 | |
BD Tuberculin Syringe | Thermo Fisher Scientific | 14-829-9 | |
Dissecting scissors | Thermo Fisher Scientific | 08-940 | |
Electrocautery | Thermo Fisher Scientific | 50822501 | |
Enclosed incubation chamber | OKOLAB | Microscope | |
Eye Needles, Size #3; 1/2 Circle, Taper Point, 12 mm Chord Length | Roboz | RS-7983-3 | |
Hank's Balanced Salt Solution | Sigma-Aldrich | 55037C | |
Hoechst 33342 | Invitrogen | H3570 | |
Imaris (v. 9.2.1) with Start, Track, XT modules | Bitplane | Software | |
Inverted DMi8 | Leica | Microscope | |
IQ3 (v. 3.6.3) | Andor | Software | |
Ketamine | Putney | Anesthesia | |
Kimwipes | VWR | 21905-026 | |
McPherson-Vannas scissors 3” (7.5 cm) Long 5X0.15mm Straight Sharp | Roboz | RS-5600 | |
Non-absorbable surgical suture, Silk Spool, Black Braided | Fisher Scientific | NC0798934 | |
Nugent Forceps 4.25” (11 cm) Long Angled Smooth 1.2mm Tip | Roboz | RS-5228 | |
Puralube Vet Ointment | Dechra | Lubricating Eye Ointment | |
Spinning disk Yokogawa CSU-W1 with a 63x 1.3 N.A. HC PLAN APO glycerol immersion objective, iXon Life 888 EMCCD camera, 405 nm diode laser, 488 nm DPSS laser, 640 nm diode laser | Andor | Confocal system | |
Xylazine | Akorn | Anesthesia |