Qui, presentiamo un protocollo integrato che misura sottopopolazione del monocito traffico sotto flusso in vitro mediante uso di specifici marcatori di superficie e microscopia a fluorescenza confocale. Questo protocollo consente di esplorare reclutamento sequenziale passaggi anche per quanto riguarda il profilo di altri sottotipi del leucocita utilizzando altri specifici marcatori di superficie.
Il reclutamento dei monociti dal sangue ai tessuti periferici mirati è fondamentale per il processo infiammatorio durante la lesione del tessuto, lo sviluppo del tumore e le malattie autoimmuni. Ciò è facilitato attraverso un processo di acquisizione da flusso libero sulla superficie luminale delle cellule endoteliali attivate, seguita da loro adesione e transendoteliale migrazione (Trasmigrazione) nel tessuto interessato sottostante. Tuttavia, i meccanismi che supportano l’assunzione preferenziale e dipendente dal contesto delle sottopopolazioni monocito ancora completamente non sono capiti. Di conseguenza, abbiamo sviluppato un metodo che permette il reclutamento di sottopopolazioni monocito differenti per essere visualizzati e misurata sotto flusso contemporaneamente. Questo metodo, basato sull’imaging confocale time-lapse, consente la distinzione inequivocabile tra aderente e transmigrated monociti. Qui, descriviamo come questo metodo può essere utilizzato per studiare simultaneamente la cascata di reclutamento dei monociti pro-angiogenici e non-angiogenici in vitro. Inoltre, questo metodo può essere esteso per studiare le diverse fasi del reclutamento di fino a tre popolazioni di monociti.
Monociti costituiscono una componente fagocitica dell’immunità innata che è essenziale per combattere gli agenti patogeni, pulizia di tessuti danneggiati, l’angiogenesi e la fisiopatologia di molte malattie compreso i cancri1,2,3 . I monociti sono cellule derivate da midollo osseo composte di sottopopolazioni eterogenee che circolano nel sangue, ma possono essere reclutate nel sito di infiammazione nel tessuto periferico attraverso specifici meccanismi molecolari. Le cascate di reclutamento dei monociti, per quanto riguarda i leucociti in generale, implica diversi passaggi tra cui cattura, rotolamento, strisciando, arresto, migrazione transendoteliale (Trasmigrazione) e migrazione attraverso la parete del vaso (membrana dello scantinato e murale di cellule)4. Questi passaggi comportano principalmente indotta da infiammazione molecole sulla superficie luminal endoteliale come selectine, glicoproteina ligandi, chemochine, molecole di adesione intercellulare e giunzionale e dei loro recettori sui leucociti quali selectina ligandi e le integrine. Vie di traffico attraverso giunzioni delle cellule endoteliali (paracellular) o attraverso il corpo delle cellule endoteliale (transcellular) possono essere utilizzate dai leucociti di attraversare la barriera endoteliale5. Mentre i monociti sono stati documentati storicamente trasmigrano attraverso la via transcellulare, potenziali divergenze nel loro percorso migratorio sono stati proposti come monociti non siano più considerati una popolazione omogenea delle cellule. Ora sta diventando chiaro che la diversità del monocito può essere definito da ciascuna delle loro differenze e somiglianze, per quanto riguarda il loro distintivo stravaso cascate3,6. Pertanto, al fine di discriminare in modo inequivocabile le sottopopolazioni monocito, è fondamentale per visualizzare ed elaborare di fenotipo il comportamento di ciascuna di queste sottopopolazioni differenti durante il reclutamento.
Monociti da umano, maiale, ratti e topi sono stati suddivisi in sottopopolazioni fenotipiche con determinate funzioni ascritte e specifici comportamenti migratori7,8,9. Ad esempio, in esseri umani, monociti possono suddividere in tre sottogruppi basati sulla loro superficie espressione di CD14, corecettore per lipopolisaccaride batterico e CD16, il ricevitore di Fc-gamma III. Sottopopolazioni monocito umano includono CD14 classica+CD16–, intermedio CD14+CD16+ e tronchetti CD14dimCD16 cellule+ 6,9. Il CD14 classica+CD16– monociti sono stati indicati per essere principalmente infiammatorie mentre la piscina di CD16+ monociti collettivamente sono stati trovati per presentare TIE2 espressione e proangiogenic funzione10. Coerentemente, la stimolazione di cellule endoteliali con citochine infiammatorie come il fattore di necrosi tumorale umano fattore α (TNF) o interleuchina (il-1) beta (convenzionale infiammazione) è sufficiente a far scattare la completa assunzione di CD14 classica+CD16 – monociti. Tuttavia, sono necessari per provocare la trasmigrazione del CD16 azioni simultanee di A di fattore di crescita endoteliale vascolare (VEGF) e TNFα (infiammazione guidata da fattori angiogenici)+ proangiogenic piscina di monociti3. Storicamente, il sistema tradizionale di Transwell in condizioni statiche, la camera di flusso di piatti paralleli e gli alloggiamenti di flusso µ-diapositiva sono stati usati per analizzare quantitativamente il reclutamento della popolazione uno leucocitaria a un tempo in vitro11 ,12,13. Mentre questi protocolli sono stati convalidati, un metodo più robusto che ha permesso l’analisi simultanea di più sottopopolazioni monocito sarebbe considerato più penetrante. Tali metodologie devono rappresentano interazioni multiple e le diverse frequenze di ogni rispettiva popolazione e anche fornire una comprensione meccanicistica delle affinità e specificità per le cascate di reclutamento che definiscono ogni monocito sottoinsieme.
Qui, presentiamo un metodo basato sull’imaging time-lapse del reclutamento di monociti sotto flusso che permette le cascate migratori delle sottopopolazioni monocito diverso da studiare simultaneamente mediante microscopia confocale. Questo metodo integra alcune caratteristiche critiche che imitano l’infiammazione delle cellule endoteliali, come pure l’emodinamica di fare circolare i monociti in venule post-capillari, la sede principale del reclutamento dei leucociti in vivo. Il metodo proposto utilizza cellule endoteliali di vena ombelicale umana (HUVEC), che vengono generate attraverso un protocollo ben consolidato di isolamento dal cordone ombelicale umani. Questa risorsa clinica ha il vantaggio di essere facilmente disponibile come sottoprodotto biologico, fornendo inoltre un rendimento ragionevole delle cellule endoteliali che può essere isolato dalla vena ombelicale. Abbiamo anche usato tinture fluorescenti e immunofluorescenza per distinguere tra i diversi componenti cellulari e microscopia confocale per definire inequivocabilmente monocito posizionamento (luminal vs abluminale) nel corso del tempo. Il protocollo qui presentato è stato sviluppato simultaneamente misurare i livelli di trasmigrazione delle sottopopolazioni monocito. Inoltre, si deve osservare che questa metodologia può essere esteso per studiare altre sottopopolazioni di leucociti e processi di reclutamento mediante uso di diversi biomarcatori ed etichettatura.
Qui, segnaliamo un metodo dettagliare uno studio di come le sottopopolazioni monocito trasmigrano attraverso il monostrato endoteliale infiammato. Il metodo discusso 4×0 microscopia confocale microscopia di contrasto di fase, che è anche usata per studiare il reclutamento di monociti sotto flusso3,11,19. Uno dei principali vantaggi dell’utilizzo di microscopia confocale per l’imaging di time-lapse è la capacità di discriminar…
The authors have nothing to disclose.
Si ringrazia il Dr. Paul Bradfield per manoscritto leggendo e feedback. A. S. ha ricevuto il sostegno finanziario il Signore Jules Thorn caritatevole Overseas Trust reg.,
Tissue Culture Flasks 75 cm2 | TPP | 90076 | Routine culture of isolated HUVEC |
µ-Slide VI 0.4 | IBIDI | 80606 | |
Centrifuge Tubes 15 mL | TPP | 191015 | |
Centrifuge Tubes 50 mL | TPP | 191050 | |
Collagen G | Biochrom | L 7213 | For coating of cell culture flasks |
Gelatin | Sigma-Aldrich | 1393 | For coating of cell culture flasks |
Dulbecco’s Phosphate Buffered Saline (without MgCl2 and CaCl2) | Sigma-Aldrich | D8537 | |
Dulbecco’s Phosphate Buffered Saline (with MgCl2 and CaCl2) | Sigma-Aldrich | D8662 | |
RPMI-1640 Medium | Sigma-Aldrich | R8758 | |
3-Way Stopcocks | BIO-RAD | 7328103 | |
penicillin 10000 u/ml streptomycine 10000 ug/ml fungizone 25 ug/ml | AMIMED | 4-02F00-H | |
Collagenase type 1 | Worthington | LS004216 | |
Medium 199 1X avec Earle's salts, L-Glutamine, 25 mM Hepes | GIBCO | 22340020 | |
Bovine Albumin Fraction V | ThermoFisher | 15260037 | |
Endothelial Cell Growth Supplement, 150mg | Millipore | 02-102 | |
Heparin Sodium | Sigma-Aldrich | H3149RT | |
Hydrocortisone | Sigma-Aldrich | H6909 | |
L-Ascorbic acid | Sigma-Aldrich | A 4544 | |
EDTA disodium salt dihydrate C10H14N2Na2O8 · 2H2O | APPLICHEM | A2937.0500 | |
CD144 (VE-Cadherin), human recombinant clone: REA199, FITC | Miltenyi Biotech | 130-100-713 | AB_2655150 |
CD31-PE antibody, human recombinant clone: REA730, PE | Miltenyi Biotech | 130-110-807 | AB_2657280 |
Anti-Podoplanin-APC, human recombinantclone: REA446, APC | Miltenyi Biotech | 130-107-016 | AB_2653263 |
BD Accuri C6 Plus | BD Bioscience | ||
µ-Slide I Luer | IBIDI | 80176 | |
CMFDA (5-chloromethylfluorescein diacetate) | ThermoFisher | C2925 | |
Recombinant human TNFα | Peprotech | 300-01A | |
Recombinant human VEGFA | Peprotech | 100-20 | |
NE-1000 Programmable Syringe Pump | KF Technology | NE-1000 | |
Ficoll Paque Plus | GE Healthcare | 17-1440-02 | |
Anti-human CD14-PE, human recombinant clone: REA599, PE | Miltenyi Biotech | 130-110-519 | AB_2655051 |
Pan Monocyte Isolation Kit, human | Miltenyi Biotech | 130-096-537 | |
Anti-human CD16-PE, human recombinant clone: REA423, PE | Miltenyi Biotech | 130-106-762 | AB_2655403 |
LS columns | Miltenyi Biotech | 130-042-401 | |
QuadroMACS Separator | Miltenyi Biotech | 130-090-976 | |
Hoechst 33342, Trihydrochloride, Trihydrate | ThermoFisher | H1399 | |
Silicone tubing | IBIDI | 10841 | |
Elbow Luer Connector | IBIDI | 10802 | |
Female Luer Lock Coupler | IBIDI | 10823 | |
Luer Lock Connector Female | IBIDI | 10825 | |
In-line Luer Injection Port | IBIDI | 10820 | |
Ar1 confocal microscope | Nikon | ||
40X objective | Nikon | 40x 0.6 CFI ELWD S Plane Fluor WD:3.6-2.8mm correction 0-2mm | |
ImageJ Software | NIH |