Summary

从人胚胎干细胞中提取合适的视网膜色素上皮组织的工程移植

Published: September 06, 2018
doi:

Summary

我们描述了一种由人类羊膜顶部培养的人多能干细胞的视网膜色素上皮细胞组成的视网膜组织的方法及其在动物模型中的移植准备。

Abstract

眼睛的几个病理条件影响视网膜色素上皮 (RPE) 的功能和/或生存。这包括一些形式的视网膜色素变性 (RP) 和年龄相关的黄斑变性 (AMD)。细胞治疗是建议治疗这些疾病的最有希望的治疗策略之一, 在人类身上已经有了令人鼓舞的初步结果。然而, 移植物的制备方法对其在体内的功能结果有显著的影响。事实上, 作为细胞悬架移植的视网膜色素上皮细胞的功能比作为视网膜组织移植的细胞要少。在此, 我们描述了一个简单的和可重复的方法来设计视网膜色素组织和它的准备在体内植入。从人类多潜能干细胞中提取的视网膜色素细胞是在生物支持下播种的, 即人羊膜 (火腿)。与人工支架相比, 这种支持有一个基底膜接近刷的膜, 其中内源性视网膜色素细胞附加的优势。然而, 它的操作不容易, 我们制定了一些策略, 以适当的培养和准备移植在体内

Introduction

RPE 是至关重要的生存和稳态的感光细胞, 它是紧密关联1。一些病理状况改变其功能和/或生存, 包括 RP 和 AMD。

RP 是一组遗传性的基因突变, 影响感光细胞或视网膜色素的功能, 或2,3。据估计, 特别影响视网膜色素上皮细胞的突变占5% 的 RP2。AMD 是另一种情况下, 视网膜色素层被改变, 最终导致中心视力损失。AMD 是由遗传和环境因素复杂的相互作用引起的, 影响老年人4,5,6。根据预测, AMD 将是全球1亿9600万名患者的关注, 到 2020年7。对于这些疾病, 目前还没有有效的治疗方法, 建议的策略之一是移植新的视网膜色素细胞, 以弥补死/非功能性视网膜色素上皮细胞8

最终产品的配方, 是必不可少的, 以确保最佳的功能效果。RPE 细胞作为细胞悬浮液注入, 尽管是一种简单而直接的分娩方法, 但对其生存、整合和功能9101112等问题提出了关注。,13. 科学家现在正在开发更复杂的配方, 以提供工程化的视网膜组织913141516。在这种情况下, 我们开发了一种原始的方法来生成体外视网膜色素组织, 可用于移植9

从人类胚胎干细胞中提取的 RPE 细胞库用于本协议。然而, 不同细胞源 (人诱导的多潜能干细胞、原发性视网膜色素上皮细胞) 的替代视网膜色素细胞库也适用于该协议。它包括定向分化协议使用细胞因子和/或小分子17,18,19,20,21,22

要移植, 工程组织应在脚手架上准备。在过去的几年中, 不同的脚手架是基于聚合物或生物起源13,23,24的矩阵开发的。在这里, 使用的生物基质是火腿, 但其他基质, 如裸露的刷膜, 可以实施。此处描述的方法具有使用与 RPE 本地环境更相关的生物支架的优点。

人类 ES 细胞源性视网膜色素上皮细胞培养至少4周, 以充分组织为鹅卵石单层。在该阶段, 获得的上皮细胞功能和极化9。最后, 由于这种组织容易皱纹, 它嵌入在薄层的水凝胶载体, 使其更刚性和弹性, 并在注射过程中保护它。该产品然后存储在4°c, 直到嫁接。

Protocol

本议定书使用的所有人类材料都是按照欧洲联盟的规定使用的。本研究使用的人类 ES 细胞系来源于一个独特的胚胎。捐出胚胎的夫妇完全知情, 并同意匿名捐赠。一个临床级的人类 ES 细胞系来源于这个胚胎, 储存, 合格, 并正确记录的罗丝琳细胞 (英国)。在产妇剖宫产期间, 根据医院的指导原则 (APHP, Hôpital 圣路易斯) 签署了知情同意的胎盘捐献, 火腿是在无菌条件下采购的。 1、…

Representative Results

火腿含有上皮层, 应在视网膜色素细胞播种前除去。用 thermolysin 在震动下对膜进行酶处理。为了不失去膜的极性 (上皮是在一侧), 它是固定在一个支持, 组成可能会有所不同取决于提供者 (图 1A)。在本步骤中检查膜的附着力, 并在必要时添加剪辑。在固定的文化插入时, 要小心地避免在膜上制造孔, 并保持其极性与基底膜朝上 (图 1B</stron…

Discussion

我们描述了一种生物支架上的 RPE 细胞培养方法及其在动物模型中的植入准备。该协议的关键步骤之一是保持火腿的方向一直沿着过程, 直到它纳入到明胶。事实上, 膜的本机上皮被去除, 其基底膜暴露9。视网膜色素上皮细胞必须在基底膜的顶端播种。在制备明胶时, 必须在规定的温度下与所有产品配合使用。事实上, 明胶的性质是刚性在4°c 和液体在体温 (37 °c)9

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢 Jérôme Larghero 和 valériemarcel Vanneaux (Hôpital 圣路易斯, 巴黎, 法国) 在这里所描述的方法的建立过程中的投入。

这项工作得到了来自情报局的赠款的支持 [GPiPS: ANR-2010-RFCS005;SightREPAIR: ANR-16-CE17-008-02], 基金会倒 la 研究所 Médicale [生物工程项目 DBS20140930777] 和从 LABEX 复活 [ANR-10-LABX-73] 到奥利弗 Goureau 和 Christelle Monville。它得到了 NeurATRIS (Investissements d ‘ 艾文莉) 的支持, 为神经 [ANR-11-INBS-0011] 和 INGESTEM 的 biotherapies, 国家基础设施 (Investissements d ‘ 艾文莉) 工程为多潜能和分化的干细胞 [ANR-11-INBS-000] Christelle Monville。Barek 是由暗淡的 Stempole 和 LABEX 复兴 [ANR-10-LABX-73] 的研究金支持。Biotherapies 是法国反肌病 (AFM)-Téléthon 协会支持的罕见疾病研究所的一部分。

Materials

Sterile biosafety cabinet TechGen International Not applicable
Liquid waste disposal system for aspiration Vacuubrand BVC 21
CO2-controlled +37 °C cell incubator Thermo Electron Corporation BVC 21 NT
200 µL pipette: P200 Gilson F144565
1 mL pipette: P1000 Gilson F144566
Pipet aid Drummond 75001
+4 °C refrigerator Liebherr Not applicable
Vibratome Leica VT1000S
Fine scissors WPI 501758
Forceps (x2) WPI 555227F
Water bath Grant subaqua pro SUB6
Precision balance Sartorius CP225D
Centrifuge Eppendorff 5804
Microscope Olympus SC30
Horizontal Rocking Shaker IKA-WERKE IKA MTS 214D
Vortex VWR LAB DANCER S40
Disposable Scalpel WPI 500351
plastic paraffin film VWR PM992
0.200 µm single use syringe filter SARTORIUS 16532
Syringe without needle 50 mL Dutscher 50012
Bottles 250mL Dutscher 28024
15 mL sterile Falcon tubes Dutscher 352097
50 mL sterile Falcon tubes Dutscher 352098
culture insert Scaffdex C00001N
60 mm cell culture disches: B6 Dutscher 353004
12 well cell culture plate Corning 3512
6-well culture plates Corning 3506
Razor blades Ted Pella, Inc 121-9
Cyanoacrylate glue Castorama 3178040670105
PBS 1X (500 mL) Sigma D8537
Thermolysine Roche 5339880001
DMEM, high glucose, GlutaMAX Invitrogen 61965-026
KSR CTS (KnockOut SR XenoFree CTS) Invitrogen 12618-013
MEM-NEAA (100X) Invitrogen 11140-035
b-mercaptoethanol (50 mM) Invitrogen 31350-010
Penicillin/Streptomycin Invitrogen 15140122
CO2-independent medium GIBCO 18045-054
Gelatin MERCK 104078
human amniotic membrane Tissue bank St Louis hospital (Paris, France) Not applicable

References

  1. Strauss, O. The retinal pigment epithelium in visual function. Physiological Reviews. 85 (3), 845-881 (2005).
  2. Hartong, D. T., Berson, E. L., Dryja, T. P. Retinitis pigmentosa. Lancet. 368 (9549), 1795-1809 (2006).
  3. Daiger, S. P., Sullivan, L. S., Bowne, S. J. Genes and mutations causing retinitis pigmentosa. Clinical Genetics. 84 (2), 132-141 (2013).
  4. Gehrs, K. M., Anderson, D. H., Johnson, L. V., Hageman, G. S. Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Annals of Medicine. 38 (7), 450-471 (2006).
  5. Swaroop, A., Chew, E. Y., Rickman, C. B., Abecasis, G. R. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annual Review of Genomics and Human Genetics. 10, 19-43 (2009).
  6. Khandhadia, S., Cherry, J., Lotery, A. J. Age-related macular degeneration. Advances in Experimental Medicine and Biology. 724, 15-36 (2012).
  7. Wong, W. L., et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet. Global Health. 2 (2), e106-e116 (2014).
  8. Ben M’Barek, K., Regent, F., Monville, C. Use of human pluripotent stem cells to study and treat retinopathies. World Journal of Stem Cells. 7 (3), 596-604 (2015).
  9. Ben M’Barek, K., et al. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Science Translational Medicine. 9 (421), (2017).
  10. Schwartz, S. D., et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 379 (9817), 713-720 (2012).
  11. Schwartz, S. D., et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet. 385 (9967), 509-516 (2015).
  12. Hsiung, J., Zhu, D., Hinton, D. R. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Translational Medicine. 4 (1), 10-20 (2015).
  13. Diniz, B., et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Investigative Ophthalmology & Visual Science. 54 (7), 5087-5096 (2013).
  14. Kamao, H., et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2 (2), 205-218 (2014).
  15. Mandai, M., et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. The New England Journal of Medicine. 376 (11), 1038-1046 (2017).
  16. Thomas, B. B., et al. Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Investigative Ophthalmology & Visual Science. 57 (6), 2877-2887 (2016).
  17. Borooah, S., et al. Using human induced pluripotent stem cells to treat retinal disease. Progress in Retinal and Eye Research. 37, 163-181 (2013).
  18. Leach, L. L., Clegg, D. O. Concise review: Making stem cells retinal: Methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells. 33 (8), 2363-2373 (2015).
  19. Reichman, S., et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proceedings of the National Academy of Sciences of the United States of America. 111 (23), 8518-8523 (2014).
  20. Lustremant, C., et al. Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis. Cellular Reprogramming. 15 (3), 233-246 (2013).
  21. Reichman, S., et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS Cells in xeno-free and feeder-free conditions. Stem Cells. 35 (5), 1176-1188 (2017).
  22. Maruotti, J., et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America. 112 (35), 10950-10955 (2015).
  23. Stanzel, B. V., et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports. 2 (1), 64-77 (2014).
  24. Ilmarinen, T., et al. Ultrathin polyimide membrane as cell carrier for subretinal transplantation of human embryonic stem cell derived retinal pigment epithelium. PloS One. 10 (11), e0143669 (2015).
  25. Thumann, G., Schraermeyer, U., Bartz-Schmidt, K. U., Heimann, K. Descemet’s membrane as membranous support in RPE/IPE transplantation. Current Eye Research. 16 (12), 1236-1238 (1997).
  26. Kiilgaard, J. F., Scherfig, E., Prause, J. U., la Cour, M. Transplantation of amniotic membrane to the subretinal space in pigs. Stem Cells International. 2012, 716968 (2012).
  27. Capeans, C., et al. Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmologica Scandinavica. 81 (3), 271-277 (2003).
  28. Ohno-Matsui, K., et al. The effects of amniotic membrane on retinal pigment epithelial cell differentiation. Molecular Vision. 11, 1-10 (2005).
  29. Paolin, A., et al. Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell and Tissue Banking. 17 (1), 51-58 (2016).
  30. Hu, Y., et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Research. 48 (4), 186-191 (2012).
  31. Pennington, B. O., Clegg, D. O. Pluripotent stem cell-based therapies in combination with substrate for the treatment of age-related macular degeneration. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association. 32 (5), 261-271 (2016).
  32. Song, M. J., Bharti, K. Looking into the future: Using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Research. 1638 (Pt A), 2-14 (2016).
  33. Ramsden, C. M., et al. Stem cells in retinal regeneration: Past, present and future). Development. 140 (12), 2576-2585 (2013).
  34. da Cruz, L., et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nature Biotechnology. 36 (4), 328-337 (2018).
  35. Kashani, A. H., et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine. 10 (435), (2018).
  36. Binder, S., Stanzel, B. V., Krebs, I., Glittenberg, C. Transplantation of the RPE in AMD. Progress in Retinal and Eye Research. 26 (5), 516-554 (2007).
  37. Dunn, K. C., Aotaki-Keen, A. E., Putkey, F. R., Hjelmeland, L. M. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Experimental Eye Research. 62 (2), 155-169 (1996).
  38. Salero, E., et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 10 (1), 88-95 (2012).

Play Video

Cite This Article
Ben M’Barek, K., Habeler, W., Plancheron, A., Jarraya, M., Goureau, O., Monville, C. Engineering Transplantation-suitable Retinal Pigment Epithelium Tissue Derived from Human Embryonic Stem Cells. J. Vis. Exp. (139), e58216, doi:10.3791/58216 (2018).

View Video