Summary

Kvantificere akutte ændringer i Renal sympatiske Nerve aktivitet som svar på centralnervesystemet manipulationer i bedøvede rotter

Published: September 11, 2018
doi:

Summary

Metoder til måling af sympatisk og hjerte-kar-svar til centralnervesystemet (CNS) manipulationer er vigtige for at fremme neurovidenskab. Denne protokol blev udviklet for at hjælpe forskere med måle og kvantificere akutte ændringer i renal sympatiske nerve aktivitet (RSNA) i bedøvede rotter (ikke-overlevelse).

Abstract

Renal sympatiske nerve aktivitet (RSNA) og middel-arterielt tryk er vigtige parametre i hjerte-kar- og autonome forskning; der er dog begrænsede ressourcer lede forskere i teknikker til at måle og analysere disse variabler. Denne protokol beskriver metoder til måling af RSNA og middel-arterielt tryk i bedøvede rotter. Protokollen indeholder også metoder til at få adgang til hjernen under RSNA optagelser til centralnervesystemet (CNS) manipulationer. RSNA optagelse teknik er kompatibel med farmakologiske, optogenetic, eller elektrisk stimulation af CNS. Fremgangsmåde er nyttig, når en efterforsker vil måle kortsigtede (min til h) autonome svar i ikke-overlevelse eksperimenter til at korrelere anatomisk med CNS kerner. Tilgangen er ikke beregnet til at blive brugt til at få kronisk (overlevelse) optagelser af RSNA i rotter. Udledninger i RSNA, gennemsnit udbedret RSNA, og middel-arterielt tryk kan kvantificeres og analyseres yderligere ved hjælp af parametrisk statistiske test. Metoder til fremskaffelse af venøs adgang, optagelse middel-arterielt tryk telemetrically og hjerne fiksering for fremtidige histologiske analyse er også beskrevet i artiklen.

Introduction

Prækliniske opdagelser om autonom kontrol af hjerte-kar-systemet informere strategier til håndtering af lidelser som hypertension, hjerteinsufficiens og kronisk nyresygdom. Overdreven aktivitet af det sympatiske nervesystem og reduceret vagus hjerte tone bidrager til forhøjet blodtryk (BP)1. Kronisk forhøjet renal sympatisk udstrømning forbedrer katekolamin udskillelse og nedsætter renale blodgennemstrømning, med skadelige konsekvenser for hjerte-kar-/ renal systemer2,3. For at definere den neurobiologiske veje fører til autonom dysfunktion, er studier i gnavere vigtige for at afgøre, hvordan centrale nervesystem (CNS) neuroner regulere sympatisk parametre. Formålet med denne protokol er at tilvejebringe de tekniske data om måling af renal sympatiske nerve aktivitet (RSNA) og BP og skitsere teknikkerne til at kvantificere akut sympatiske ændringer som reaktion på CNS manipulationer i bedøvede rotter.

Akut (ikke-overlevelse) RSNA målinger (varig min til h) er nyttige, når forskerne vil sonden CNS farmakologisk, elektrisk, eller optogenetically i bedøvede rotter til at bestemme funktionerne af specifikke kerner. Ved hjælp af disse metoder, strukturer som den ensomme kerne, periaqueductal grå, er pedunculopontine tegmentum og rostralt ventrolaterale medulla blevet undersøgt for at definere neurobiologiske veje regulering sympatisk parametre4, 5,6,7. Denne tilgang er vigtig for at identificere CNS mål undersøges yderligere i kronisk modeller af autonom dysfunktion8,9. For at fuldføre disse eksperimenter, kræver laboratoriet en loddekolbe, kirurgisk mikroskop, stereotaxisk ramme, mikroelektrode forstærker og lyd monitor. Afhængigt af de faktorer i laboratoriet at bidrager til elektrisk støj, kan kirurgiske/optagelse område kræve et Faraday bur/jordforbindelse rem til at reducere elektrisk støj i RSNA optagelse. Hvis hjernen analyser vil kræve væv fiksering, en perfusion pumpe og aftræk hood er påkrævet. Data kan digitaliseres og registreres ved hjælp af flere fysiologisk software/data erhvervelse (analog-digital konverter) enheder4,5, med forskellige analyser valgmuligheder og kompatibilitet for at indarbejde telemetric signaler .

Protocol

Alle metoder beskrevet blev godkendt af Udvalget om institutionelle Animal Care på University of Illinois i Chicago. 1. Opret Bipolar RSNA elektroder Hvis du vil oprette elektroden, skåret to stykker af tråd af rustfrit stål hver ca. 18 mm lang. Skær et stykke af polyethylen (PE-50) slanger ca 15 mm lange. Fodre begge stykker af tråd ind i slangen, forlader den ledning fremspringende fra begge ender. Fjerne isoleringen fra enderne af ledningerne; trim ledningerne forl…

Representative Results

Figur 1 illustrerer en prøve RSNA og BP optagelse fra en Nembutal-bedøvede rotte. En intravenøs injektion af phenylephrin blev brugt til at fremkalde en stigning i middel-arterielt tryk og at fremmane den baroreflex og forbigående sympathoinhibition4,6. For at kvantificere RSNA, var den rå RSNA korrigeret og gennemsnit for ikke-overlappende 10 s segmenter; støj skøn blev trukket fra hver segmen…

Discussion

Afgørende skridt til at måle RSNA omfatter: (1) undgå udspænding af nyrearteriestenose og nerver når adskiller nyre fra paraspinal muskel og når markedsføring nerve segment optagelse elektroder, (2) omhyggeligt dissekere de renale nervefibre fra de omkringliggende væv/skib, (3) at sikre, at elektroden ledninger er fri for væv, blod, eller lymfeknuder væske, og (4) forhindrer nerven mod udtørring ved at anvende mineralsk olie på den renale nerve og silica gel til nerve-elektrode enhed. I forbindelse med fejlfi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne undersøgelse blev støttet af det nationale Institut for sygepleje forskning (K99/R00NR014369).

Materials

Stainless steel wire A-M Systems; Sequim, WA 791000 RSNA electrode
Polyethylene (PE-50) tubing VWR; Radnor, PA 63019-048 RSNA electrode; vessel cannulation
Miniature pin connector A-M Systems; Sequim, WA 520200 RSNA electrode
Crimping tool Daniels Manufacturing Corp.; Orlando, FL M22520 RSNA electrode
Connector strip Amphenol; Clinton Township, MI 221-2653 RSNA electrode
J-B Kwik Epoxy J-B Weld, Sulphur Springs, TX 8270 RSNA electrode
Silicone Permatex; Hartford, CT 2222 RSNA electrode
Heparin sodium; Injectable (10 mL vial, 1000 U/mL) KV Veterinary Supply; David City, NE P03466 Venous line patency
Phenylephrine HCl; Injectable (1 mL vial; 10 mg/mL) ACE Surgical Supply; Brockton, MA 950-6312 Testing renal sympathoinhibition
Single-hook elastic surgical stays Harvard Apparatus; Holliston, MA 72-2595 Incision
Silk surgical tape 3M, Minneapolis, MN 1538-0 Secure surgical stays
Needles, 20 G Sigma-Aldrich; St. Louis, MO Z192554-100EA Vessel cannulation
Dumont #7 curved forceps Fine Science Tools; Foster City, CA 11274-20 Vessel cannulation
5-0 silk suture ties Braintree Scientific; Braintree, MA SUT-S 106 Vessel cannulation
Delicate hemostatic forceps Roboz Surgical Instrument Co.; Gaithersburg, MD RS-7117 Vessel cannulation and RSNA surgery
Crile Hemostatic forceps Fine Science Tools; Foster City, CA 13004-14 Needle bending
Telemetry transmitter Data Sciences International; Minneapolis, MN PA-10 Mean arterial pressure monitoring (telemetry)
Re-gel syringe Data Sciences International; Minneapolis, MN 276-0038-001 Transmitter reuse (telemetry)
Disposable pressure transducer Transpac; San Clemente, CA MI-1224 Mean arterial pressure monitoring
Clear-Cuff pressure infuser MILA International Inc.; Florence, KY 2281339 Mean arterial pressure monitoring
Vessel cannulation forceps Fine Science Tools; Foster City, CA 00574-11 Catheter insertion
Black monofilament nylon 4-0 suture on reverse cutting needle McKesson Medical-Surgical; San Francisco, CA S661GX Secure telemetry transmitter
Telemetry receiver Data Sciences International; Minneapolis, MN RPC-1 Mean arterial pressure monitoring (telemetry)
LabChart Pro (software), PowerLab (acquisition hardware) AD Instruments; Colorado Springs, CO ML846, MX2 matrix 2.0 (Compatible with Data Science International telemetry) 3 options for software/acquisition hardware
SciWorks (software), DataWave (acquisition hardware) DataWave Technologies, Loveland, CO N/A
Spike 2 (software), Micro1401-3 Cambridge Electronic Design Ltd., London UK 1401-3
Micro-drill Roboz Surgical Instrument Co.; Gaithersburg, MD RS-6300 CNS surgery
Stereotaxic surgery frame Stoelting; Wood Dale, IL 51600 CNS surgery
Microelectrode amplifier with 10X pre-amplifier A-M Systems; Sequim, WA 1800-2 RSNA recording
Retractors Fine Science Tools; Foster City, CA 17009-07 RSNA surgery
Micro-dissecting tweezers Fine Science Tools; Foster City, CA 11251-10 RSNA surgery
Micro-hook Fine Science Tools; Foster City, CA 10064-14 RSNA surgery
Mineral oil Fisher Scientific; Waltham, MA 8042-47-5 RSNA surgery
Audio monitor A-M Systems; Sequim, WA 3300 RSNA surgery
Silica gel Wacker, Munchen; Germany RT601A-B RSNA surgery
Electrical clips Tyco Electronics; Schaffhausen, Switzerland EB0283-000 Grounding or securing perfusion needle
Bonn scissors, straight/sharp points Roboz Surgical Instrument Co; Gaithersburg, MD RS-5840 Perfusion
Gavage needle Harvard Apparatus; Holliston, MA 75-0286 Perfusion
Masterflex perfusion pump Cole-Parmer; Vernon Hills, IL 7524-10 Perfusion
Masterflex platinum-cured silicone tubing Cole-Parmer; Vernon Hills, IL 96410-15 Perfusion
Formalin (10% buffered solution; 4 L) Sigma-Aldrich; St. Louis, MO HT501128 Perfusion
Sucrose Sigma-Aldrich; St. Louis, MO S0389 Cryoprotection

References

  1. Mancia, G., Grassi, G. The autonomic nervous system and hypertension. Circulation Research. 114 (11), 1804-1814 (2014).
  2. Kannan, A., Medina, R. I., Nagajothi, N., Balamuthusamy, S. Renal sympathetic nervous system and the effects of denervation on renal arteries. World Journal of Cardiology. 6 (8), 814-823 (2014).
  3. Johns, E. J., Kopp, U. C., DiBona, G. F. Neural control of renal function. Comprehensive Physiology. 1 (2), 767 (2011).
  4. Fink, A. M., Dean, C., Piano, M. R., Carley, D. W. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in Nembutal-anesthetized rats. PLoS One. 12 (11), e0187956 (2017).
  5. Dean, C. Endocannabinoid modulation of sympathetic and cardiovascular responses to acute stress in the periaqueductal gray of the rat. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology. 300 (3), R771-R779 (2011).
  6. Seagard, J. L., et al. Anandamide content and interaction of endocannabinoid/GABA modulatory effects in the NTS on baroreflex-evoked sympathoinhibition. American Journal of Physiology-Heart and Circulatory Physiology. 286 (3), H992-H1000 (2004).
  7. Ferreira, C. B., Cravo, S. L., Stocker, S. D. Airway obstruction produces widespread sympathoexcitation: Role of hypoxia, carotid chemoreceptors, and NTS neurotransmission. Physiological Reports. 6 (3), (2018).
  8. Stocker, S. D., Muntzel, M. S. Recording sympathetic nerve activity chronically in rats: Surgery techniques, assessment of nerve activity, and quantification. American Journal of Physiology-Heart and Circulatory Physiology. 305 (10), H1407-H1416 (2013).
  9. Miki, K., Kosho, A., Hayashida, Y. Method for continuous measurements of renal sympathetic nerve activity and cardiovascular function during exercise in rats. Experimental Physiology. 87 (1), 33-39 (2002).
  10. Huetteman, D. A., Bogie, H. Direct blood pressure monitoring in laboratory rodents via implantable radio telemetry. Methods in Molecular Biology. 573, 57-73 (2009).
  11. Jespersen, B., Knupp, L., Northcott, C. A. Femoral arterial and venous catheterization for blood sampling, drug administration and conscious blood pressure and heart rate measurements. Journal of Visualized Experiments. (59), 3496 (2012).
  12. Paxinos, G., Watson, C. . The rat brain in stereotaxic coordinates. , (2014).
  13. Scislo, T. J., Augustyniak, R. A., O’Leary, D. S. Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. American Journal of Physiology. 275, R995-R1002 (1998).
  14. Kopp, U. C., Jones, S. Y., DiBona, G. F. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology. 295 (6), R1882-R1890 (2008).
  15. Guild, S. J., et al. Quantifying sympathetic nerve activity: problems, pitfalls and the need for standardization. Experimental Physiology. 95 (1), 41-50 (2010).
  16. Stocker, S. D., Hunwick, K. J., Toney, G. M. Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats. Journal of Physiology. 15 (563 Pt 1), 249-263 (2005).
  17. Stocker, S. D., Gordon, K. W. J. Glutamate receptors in the hypothalamic paraventricular nucleus contribute to insulin-induced sympathoexcitation. Neurophysiology. 113 (5), 1302-1309 (2015).
  18. Saponjic, J., Radulovacki, M., Carley, D. W. Injection of glutamate into the pedunculopontine tegmental nuclei of anesthetized rat causes respiratory dysrhythmia and alters EEG and EMG power. Sleep and Breathing. 9 (2), 82-91 (2005).
  19. DiBona, G. F., Jones, S. Y. Dynamic analysis of renal nerve activity responses to baroreceptor denervation in hypertensive rats. Hypertension. 37 (4), 1153-1163 (2001).
  20. Kunitake, T., Kannan, H. Discharge pattern of renal sympathetic nerve activity in the conscious rat: spectral analysis of integrated activity. Journal of Neurophysiology. 84 (6), 2859-2867 (2000).
  21. Machado, B. H., Bonagamba, L. G. Microinjection of L-glutamate into the nucleus tractus solitarii increases arterial pressure in conscious rats. Brain Research. 576 (1), 131-138 (1992).
  22. Murakami, M., et al. Inhalation anesthesia is preferable for recording rat cardiac function using an electrocardiogram. Biological and Pharmaceutical Bulletin. 37 (5), 834-839 (2014).
  23. Nakamura, T., Tanida, M., Niijima, A., Hibino, H., Shen, J., Nagai, K. Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats. Neuroscience Letters. 416 (2), 107-112 (2007).
  24. Bardgett, M. E., McCarthy, J. J., Stocker, S. D. Glutamatergic receptor activation in the rostral ventrolateral medulla mediates the sympathoexcitatory response to hyperinsulinemia. Hypertension. 55 (2), 284-290 (2010).
  25. Brozoski, D. T., Dean, C., Hopp, F. A., Seagard, J. L. Uptake blockade of endocannabinoids in the NTS modulates baroreflex-evoked sympathoinhibition. Brain Research. 1059 (2), 197-202 (2005).
  26. Barman, S. M. What can we learn about neural control of the cardiovascular system by studying rhythms in sympathetic nerve activity?. International Journal of Psychophysiology. 103, 69-78 (2016).
  27. Charkoudian, N., Wallin, B. G. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Comprehensive Physiology. 4 (2), 825-850 (2014).
  28. Malpas, S. C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiological Reviews. 90 (2), 513-557 (2010).
  29. Chen, W. W., Xiong, X. Q., Chen, Q., Li, Y. H., Kang, Y. M., Zhu, G. Q. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiologica. 213 (4), 778-794 (2015).
  30. Linz, D., et al. Modulation of renal sympathetic innervation: Recent insights beyond blood pressure control. Clinical Autonomic Research. , (2018).

Play Video

Cite This Article
Fink, A. M., Dean, C. Quantifying Acute Changes in Renal Sympathetic Nerve Activity in Response to Central Nervous System Manipulations in Anesthetized Rats. J. Vis. Exp. (139), e58205, doi:10.3791/58205 (2018).

View Video