2 光子レーザーを介して細胞膜が負傷した膜を再シール能力評価に広く使われている方法で、複数の細胞のタイプに適用できます。ここでは、体外でライブ イメージング dysferlinopathy 2 光子レーザー アブレーション患者細胞の膜を再シールするためのプロトコルについて述べる.
数多くの病態生理学的侮辱は細胞膜に損傷を与えることができるし、細胞膜修復または整合性の生来欠陥と相まって病で発生する可能性が。周囲の細胞膜修復基盤となる分子機構の解明は、したがって、機能不全の細胞膜の動態と関連する疾患の新規治療戦略の開発に重要な目的。細胞膜を再シールするさまざまな疾患のコンテキストで理解することを目的とした多くのin vitroとin vivoの研究は、次の実験的治療機能の結果を決定するための標準として 2 光子レーザー焼灼を利用します。この分析では、細胞膜が破裂し、細胞に侵入する蛍光色素細胞膜をおこす二光子励起レーザーと負傷にさらされます。セル内での蛍光の強度は、自体を再シールする細胞の能力を定量化する監視できます。アプローチ自体が負傷した二光子レーザーで大きな変化と同様、傷害、細胞膜の応答を評価するためのいくつかの方法があります、したがって、セルが負傷したの単一の統一されたモデルは有益減少になるだろう、これらの方法のバリエーション。この記事では、細胞膜修復体外の両方の健康と dysferlinopathy 患者線維芽細胞細胞トランスフェクション フルレングス ジスフェリン プラスミドの有無を評価するためのプロトコルが負傷した単純な二光子励起レーザーを概説します。
真核細胞の細胞膜は、細胞の内か細胞外の環境を定義し、細胞の恒常性と細胞の生存を維持するために不可欠ですタンパク質がちりばめられたリン脂質の二重層で構成されます。機械的又は化学的侮辱から生じる細胞膜損傷、様々 な哺乳類の細胞のタイプで平凡、骨格を含む、心筋、胃、肺細胞は1,2,3,4。毎日生理機能の結果としての傷害、に加えては、環境の侮辱、細菌毒素、虚血再灌流5によって細胞膜を破損ことができます。細胞膜の破裂を再シールに失敗につながる細胞外 Ca2 +– – その他の潜在的に有害細胞コンポーネントと共に無秩序な流入、細胞へ細胞になることができますすぐに下流の信号カスケードをトリガー死1,4,5,6。
日には、細胞膜修復のためいくつかの提案されたモデルがずっとあります。サイズや膜破裂の性質に応じて異なる修復メカニズムが起動できます。たとえば、側方流動や目詰まり小さな混乱を修復するタンパク質が細胞膜を利用することが示唆された (< 1 nm)。側面の融合モデルを提案する膜が破裂するがジスフェリン含む横募集を通して出される急速に膜7、蛋白質モデルの目詰まり小さな穿孔がタンパク質集計を出されることを示唆しています。(大抵アネキシン)8します。 逆に、大きい膜病変を引き起こす Ca2 +-依存、ジスフェリンを介した小胞融合し修復パッチの形成。修理パッチ モデルでセルに急速な Ca2 +流入トリガー形複合体や細胞内小胞の融合と共に「パッチ」複数のタンパク質 (ジスフェリン、アネキシン、mitsugumin-53、EDH 蛋白質) の募集やリソソーム膜のサイトで4,9,10、11,12に損傷を与えます。これらのモデルは必ずしも相互に排他的ではありませんし、膜の修復を容易にするコンサートで動作可能性がありますに注意してくださいすることが重要です。細胞膜の損傷を正しく再シールに失敗した筋ジストロフィー (dysferlinopathy – 三好ミオパチー、肢帯型筋ジストロフィーのタイプ IIB、前方脛骨発症型ミオパチーなど) を含む複数の病気の状態に関連付けられています。13、心筋症の14、および Chediak-東症候群 (CHS)15。
その適切な細胞膜の完全性と演劇を再シール健康と病気、そのような重要な役割細胞膜修復の分子機構の解明理解有益となる新しい治療戦略の検索で。したがって、速度を監視し、細胞膜修復の能力を評価する適切な実験技術を保有する必要は。細胞膜修復をモデル化するためいくつかの培養方法を設計されています。1 つの戦略には、機械的損傷、細胞をこするピペット/手術/刃またはセル16のガラスビーズの寝返りによってを通じて促進することができますが含まれます。ただし、機械的損傷のこのタイプはより大きな病変を生成し、細胞損傷、内や文化の間の変化の高度を作成します。
膜の傷を生成する別の方法は、二光子励起顕微鏡法によるレーザーアブレーションです。単一光子励起を採用し従来のレーザー共焦点顕微鏡と対照をなして 2 光子レーザーは同時に17の高エネルギー電子の励起を容易にするのに 2 つの長波長、低エネルギーの光子を使用します。この非線形プロセス結果励起焦点面でのみ、全体の光路17 (図 1) にはないです。これは、削減励起ボリューム イメージングの生きているセル18,19時に光損傷を最小限に抑えることです。研究者は、細胞膜とモニター膜は蛍光染料を使用し、細胞膜が破裂し、reseals としての蛍光強度の変化を観察することによってリアルタイムで再封止の正確な病変を生成することが従って。
このアプローチは、 in vitroとin vivoが負傷した膜を研究に使用されました、複数セルのタイプ20,21。たとえば、膜は、線維芽細胞および dysferlinopathy この技術22,23を行った患者由来細胞の欠陥を修復します。また、マウスから隔離された単一の筋線維は、修復パッチ形成13,24,25を監視する使用されました。9単一の筋線維の細胞膜修復中の蛍光付けられた蛋白質の動きを観察することも。さらに、ゼブラフィッシュ胚における二光子励起レーザーが負傷した後, 修復のプロセスは、26リアルタイム体内で観察できます。
この記事で私たちは能力を再封止膜の定量化を目的として様々 な細胞タイプにこの方法論を適用できますが、2 光子レーザーの負傷を使用して線維芽細胞細胞膜修復の動態を評価するための方法論を概説します。生体外で。FM4 64 セルに孵化するこの方法では、すぐに否定的に連結され、蛍光を発する脂溶性、細胞不浸透性染料の帯電膜病変から細胞に入ると細胞質内リン脂質 (図 2&3). 色素蛍光膜病変に隣接の定量化により細胞膜自体を封印するためにかかる時間を監視するため。このメソッドの有用性を実証するため細胞膜修復の救助を評価するのに GFP 共役フルレングス ジスフェリン (DYSF) プラスミドをトランスフェクトした dysferlinopathy 患者線維芽を使用します。
2 光子レーザーの細胞膜の負傷は、再シールする体外膜のダイナミクスを評価するため正確で汎用性の高い手法です。この記事で dysferlinopathy 患者細胞アッセイが負傷した二光子励起レーザーを使用しての能力を再シールする細胞膜を決定するプロトコルについて述べる。Dysferlinopathy 患者の細胞は細胞膜が再シールに欠陥が他の研究者による調査結果に一貫しているし、筋肉間の原動?…
The authors have nothing to disclose.
この作品は、技術革新 (CFI) のアルバータ大学学部医学と歯学、友人のギャレット カミング研究椅子基金、HM のトゥーピン神経科学研究の椅子基金、筋ジストロフィー カナダ、カナダの財団によって支えられました。アルバータ州の高度な教育と技術 (AET)、カナダ保健研究 (機構)、ジェシーの旅 – 遺伝子と細胞療法、女性と子供の健康研究所 (WCHRI) のための基礎機構とアルバータ州革新健康ソリューション (AIHS).
博士スティーブン ラヴァルをありがとうフルレングス ジスフェリン プラスミドをご提供したいと思います。技術的助言の Katsuya Miyake 先生に感謝も申し上げます。
Dulbecco's Modified Eagle Medium (DMEM) | Thermo Fisher | 11320033 | |
Fetal Bovine Serum | Sigma-Aldrich | F1051 | |
Penicillin-Streptomycin (10,000 U/mL) | Thermo Fisher | 15140122 | |
Trypsin-EDTA (0.05%), phenol red | Thermo Fisher | 25300062 | |
Dulbecco’s Phosphate Buffered Saline | Sigma-Aldrich | D8537 | |
35mm collagen-coated glass-bottom dishes | MatTek | P53GCOL-1.5-14-C | |
Serum-deprived media | Thermo Fisher | 31985070 | |
Transfection reagent | Thermo Fisher | 15338100 | |
FM 4-64 Dye | Invitrogen | T13320 | |
Tyrode’s Salts Solution | Sigma-Aldrich | T2397 | |
Confocal laser scanning microscope | Carl Zeiss | NA | |
Chameleon Two-photon laser | Coherent | NA |