Summary

ペプチドマイクロアレイによるヒストン抗体特異性の解析

Published: August 01, 2017
doi:

Summary

この原稿では、ヒストンとその翻訳後修飾を認識する抗体の特異性プロファイリングにペプチドマイクロアレイ技術を適用する方法が記載されています。

Abstract

ヒストンタンパク質の翻訳後修飾(PTM)は、クロマチン構造および遺伝子発現の調節におけるそれらの役割について広く研究されている。ヒストンPTMに特異的な抗体の大量生産および分布は、これらのマークの研究を非常に容易にした。ヒストンPTM抗体は多くのクロマチン生化学アプリケーションにとって重要な試薬であるため、正確なデータ解釈と現場での継続的な進歩には抗体特異性の厳密な解析が必要です。このプロトコルは、ヒストン抗体の特異性をプロファイリングするためのペプチドマイクロアレイの設計、製作および使用のための統合されたパイプラインを記載している。この手順の設計と分析の側面は、マイクロアレイ印刷フォーマットのカスタマイズを合理化するために最近開発したオープンソースのインタラクティブなソフトウェアパッケージであるArrayNinjaによって容易になります。このパイプラインは、市販されて広く使用されている多数のヒストンPTM抗体のスクリーニングに使用されているこれらの実験から生成されたデータは、オンラインおよび拡大Histone Antibody Specificity Databaseを通じて自由に入手できます。ヒストンを越えて、本明細書に記載の一般的な方法論は、PTM特異的抗体の分析に広く適用することができる。

Introduction

ゲノムDNAは、ヒストンタンパク質を含む真核細胞の核内にエレガントにパッケージングされ、クロマチンを形成する。クロマチンの反復サブユニットはヌクレオソームであり、これはヒストンタンパク質の八量体コア(H2A、H2B、H3、およびH4 1)のまわりに包まれた147塩基対のDNAからなる。クロマチンは、ゆるやかに詰まったユークロマチンおよび密に詰まったヘテロクロマチンドメインに広く組織されている。クロマチン圧縮の程度は、複製、転写、および修復のような基本的なDNA鋳型プロセスを実行するために、タンパク質機械が根底にあるDNAにアクセスできる程度を調節する。

クロマチンの文脈におけるゲノムアクセシビリティの重要な調節因子は、ヒストンタンパク質2、3の構造化されていない尾とコアドメイン上のPTMです。ヒストンPTMは、クロマチン4の構造に直接的に作用し、間接的に作用する染色体リモデリング、酵素的および足場活性を有するリーダータンパク質および関連する巨大分子複合体の動員5 。過去20年にわたるヒストンPTM機能の研究は、これらのマークが細胞運命、生物発達、および疾患の開始/進行の調節において重要な役割を果たすことを圧倒的に示唆している。質量分析に基づくプロテオーム技術の進歩により、80以上の異なるヒストン残基に20以上のユニークなヒストンPTMが発見されました6 。注目すべきことに、これらの修飾は、しばしば組み合わせで発生し、「ヒストンコード」仮説と一致して、多くの研究は、リーダタンパク質がヒストンのPTM 7、8、9の特定の組み合わせの認識を介してクロマチンの別個の領域を標的とすることを示唆しています。重要な課題は、関数をgrに割り当てることですヒストンPTMの特定の組み合わせがどのようにしてクロマチンに関連する動的機能を調整するかを決定することができる。

抗体は、ヒストンPTMの検出のためのリンチピン試薬である。このように、クロマチン生化学研究に使用するために、1,000を超えるヒストンPTM特異的抗体が商業的に開発されている。ハイスループットDNA配列決定技術の急速な発展に伴い、これらの試薬は、チップ配列の個々の研究者および大規模エピゲノミクス「ロードマップ」の取り組み( 例えば 、ENCODEおよび青写真)によって広く使用されている(次世代シークエンシングと結合クロマチン免疫沈降)パイプラインヒストンPTM分布ゲノムワイド10、11の高解像度空間マップを生成します。しかし、最近の研究により、ヒストンPTM抗体の特異性は非常に可変であり得、これらの試薬は非特定の残基に変更順序を識別ようなオフターゲットエピトープ認識、隣接のPTMによる強い正および負の影響、及び困難としてavorable特性( 例えば 、モノ- 、ジ- 、またはトリ-メチルリジン)12、13、14、15 、16、17、18。したがって、これらの貴重な試薬で生成されたデータを正確に解釈するには、ヒストンPTM特異的抗体試薬の厳密な品質管理が必要です。

マイクロアレイ技術は、ハイスループットで、再現性があり、かつ小型化されたフォーマットで、何千もの高分子相互作用の同時検査を可能にする。このため、マイクロアレイプラットフォームの様々なタンパク質-DNA 19を分析するために作成されています「> 20、タンパク質-タンパク質21、及びタンパク質-ペプチド相互作用22。実際、ヒストンペプチドマイクロアレイは消しゴム、作家のハイスループットプロファイリングを可能にする、クロマチン生化学研究のための有益な発見プラットフォームとして浮上し、そしてヒストンのPTM 15の読者ました、23、24、またヒストン抗体特異性17、25の分析のため。クロマチンとエピジェネティクス研究におけるそれらの用途を超えて、ヒストンペプチド配列は、抗全身性エリテマトーデスおよび他の自己免疫疾患の診断/予後診断検査としての潜在的有用性を有しますクロマチン自己抗体は26、27生成しています。

ここでは、設計、製造、および開発のために開発した統合パイプラインについて説明しますヒストンおよびそれらのPTMを認識する抗体の特異性プロファイルを生成するためにヒストンペプチドマイクロアレイをライニングする。このパイプラインは、我々が最近開発したオープンソースのインタラクティブなソフトウェアアプリケーションであるArrayNinjaによって容易にされ、マイクロアレイ実験の設計と解析段階を統合している28 。 ArrayNinjaはGoogle Chromeで最適に動作します。簡単に述べると、ロボット接触マイクロアレイプリンターを用いて、ストレプトアビジン被覆ガラス顕微鏡スライド上の規定された位置にビオチン結合ヒストンペプチドのライブラリーを沈着させる。次いで、抗体 – エピトープ相互作用を調べるために、競合的および並行アッセイ形式でアレイを使用することができる( 図1 )。ペプチドライブラリーは、PTM(リジンアセチル化、リシン/アルギニンメチル化、およびセリン/スレオニンリン酸化)を単独で、プロテオミクスデータセットに主に由来する関連する組み合わせを有する何百ものユニークな合成ペプチドからなる。ペプチド合成および検証のための方法他の場所で詳述されている23 。このアレイプラットフォームを利用した、現在行われているヒストンPTM抗体スクリーニングの取り組みから得られたデータは、公開されているWebリソース、Histone Antibody Specificity Database(www.histoneantibodies.com)に保存されています。注目すべきことに、このプロトコルのバリエーションで製造ヒストンペプチドマイクロアレイはまた、ヒストンPTMリーダードメイン8、29、30、31、32、33、34、35、36、37の活性を特徴づけるために広く使用されており、より最近ヒストンをプロファイルしますPTMライターと消しゴムの活動24

/files/ftp_upload/55912/55912fig1.jpg "/>
図1:ヒストンペプチドマイクロアレイ上の抗体スクリーニングのための段階的手順の漫画の描写。定義された翻訳後修飾(赤色および青色の円)を有するビオチン化ヒストンペプチドを、ストレプトアビジン被覆ガラス上のビオチン – フルオレセインと同時プリントする。陽性の相互作用は、赤色蛍光として視覚化される。 この図の拡大版を見るには、ここをクリックしてください。

Protocol

1. ArrayNinjaのインストールと実行 www.virtualbox.orgからOracle Virtual Boxをダウンロードしてインストールします。 http://research.vai.org/Tools/arrayninjaからArrayNinja仮想マシン(VM)をダウンロードして解凍します。 バーチャルボックスを開き、 'Machine'、 'Add'をクリックしてArrayNinja VMを追加し、ArrayNinja VMが保存されていたフォルダからarrayninja.vboxを選択します。 仮…

Representative Results

このプロトコルは、ヒストンPTM抗体特異性の分析のためのペプチドマイクロアレイプラットフォームを設計し、製造するために使用されてきた。このアレイは、コアおよびバリアントヒストンタンパク質38に見られるPTMの既知の組み合わせの多くを表す、300を超える独自のペプチド機能(長さ20〜40残基)のライブラリを照会します38</sup…

Discussion

生物医学研究用途における抗体の信頼性が最優先事項46、47です。これは、ヒストンPTMの存在量および分布を特徴付けるために開発された技術の大部分のための重要なツールとしての抗体の位置を考慮すると、クロマチン生化学において特に当てはまります。ここに示されたプロトコルは、ヒストンPTM抗体特異性を分析するためのペプチドマイクロ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この研究は、部分的には、Van Andel Research Instituteによって支援され、国立衛生研究所(CA181343)からSBR

Materials

Printing Buffer ArrayIt PPB
BSA Omnipure 2390
Streptavidin-coated glass microscope slides Greiner Bio-one 439003-25
polypropylene 384 well plate Greiner Bio-one 784201
Biotin-fluorescein Sigma 53608
contact microarray printer Aushon 2470 Aushon 2470 Microarray Printer
contact microarray printer Gene Machines OmniGrid 100 OmniGrid Microarray Printer
PBS Invitrogen 14190
Blocking Buffer ArrayIt SBB
Hydrophobic wax pen Vector Labs H-4000 ImmEdge Hydrophobic Barrier PAP Pen
Silicon Gasket Grace Bio-labs 622511
Hybridization Vessel Thermo Scientific 267061 or similar vessel
Fluorescent-dye conjugated secondary antibody Life Technologies A-21244 Alexa Fluor 647 (anti-rabbit)
Fluorescent-dye conjugated secondary antibody Life Technologies A-21235 Alexa Fluor 647 (anti-mouse)
Wax Imprinter ArrayIt MSI48
Tween-20 Omnipure 9490
Microarray Scanner Innopsys InnoScan 1100AL or equivalent microarray scanner
EipTitan Histone Peptide Microarray Epicypher 112001
AbSurance Pro Histone Peptide Microarray Millipore 16668
MODified Histone Peptide Array Active Motif 13001
Histone Code Peptide Microarrays JPT His_MA_01
Wax Royal Oak GulfWax for wax imprinter
Humidified Microarray Slide Hybridization Chamber VWR 97000-284
High throughput microscope slide washing chamber ArrayIt HTW
Microscope slide centrifuge VWR 93000-204
Antibody 1 Abcam 8898
Antibody 2 Millipore 07-473
Biotinylated histone peptide EpiCypher 12-0001 Example peptide. Similar peptides with various modifications are available from several commercial sources.
ImageMagick https://www.imagemagick.org/script/index.php
ArrayNinja https://rothbartlab.vai.org/tools/

References

  1. van Steensel, B. Chromatin: constructing the big picture. EMBO J. 30 (10), 1885-1895 (2011).
  2. Kouzarides, T. Chromatin modifications and their function. Cell. 128 (4), 693-705 (2007).
  3. Rothbart, S. B., Strahl, B. D. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 1839 (8), 627-643 (2014).
  4. Shogren-Knaak, M., Ishii, H., Sun, J. -. M., Pazin, M. J., Davie, J. R., Peterson, C. L. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 311 (5762), 844-847 (2006).
  5. Musselman, C. A., Lalonde, M. -. E., Côté, J., Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 19 (12), 1218-1227 (2012).
  6. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D., Zhao, Y. SnapShot: Histone Modifications. Cell. 159 (2), 458 (2014).
  7. Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature. 403 (6765), 41-45 (2000).
  8. Rothbart, S. B., Krajewski, K., et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol. 19 (11), 1155-1160 (2012).
  9. Wang, Z., Zang, C., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 40 (7), 897-903 (2008).
  10. Stunnenberg, H. G., Hirst, M. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell. 167 (5), 1145-1149 (2016).
  11. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 489 (7414), 57-74 (2012).
  12. Egelhofer, T. A., Minoda, A., et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 18 (1), 91-93 (2011).
  13. Bock, I., Dhayalan, A., Kudithipudi, S., Brandt, O., Rathert, P., Jeltsch, A. Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics. 6 (2), 256-263 (2011).
  14. Busby, M., Xue, C., et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin. 9, 49 (2016).
  15. Fuchs, S. M., Krajewski, K., Baker, R. W., Miller, V. L., Strahl, B. D. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol. 21 (1), 53-58 (2011).
  16. Kungulovski, G., Jeltsch, A. Quality of histone modification antibodies undermines chromatin biology research. F1000Research. 4, 1160 (2015).
  17. Rothbart, S. B., Dickson, B. M., et al. An Interactive Database for the Assessment of Histone Antibody Specificity. Mol Cell. 59 (3), 502-511 (2015).
  18. Rothbart, S. B., Lin, S., et al. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies. Sci Rep. 2, 489 (2012).
  19. Berger, M. F., Bulyk, M. L. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc. 4 (3), 393-411 (2009).
  20. Hu, S., Wan, J., et al. DNA methylation presents distinct binding sites for human transcription factors. eLife. 2, e00726 (2013).
  21. Moore, C. D., Ajala, O. Z., Zhu, H. Applications in high-content functional protein microarrays. Curr Opin Chem Biol. 30, 21-27 (2016).
  22. MacBeath, G., Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science. 289 (5485), 1760-1763 (2000).
  23. Rothbart, S. B., Krajewski, K., Strahl, B. D., Fuchs, S. M. Peptide microarrays to interrogate the “histone code” . Methods Enzymol. 512, 107-135 (2012).
  24. Cornett, E. M., Dickson, B. M., et al. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray. Methods Enzymol. 574, 31-52 (2016).
  25. Nady, N., Min, J., Kareta, M. S., Chédin, F., Arrowsmith, C. H. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci. 33 (7), 305-313 (2008).
  26. Dieker, J., Berden, J. H., et al. Autoantibodies against Modified Histone Peptides in SLE Patients Are Associated with Disease Activity and Lupus Nephritis. PLoS ONE. 11 (10), (2016).
  27. Price, J. V., Tangsombatvisit, S., et al. “On silico” peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. Nat Med. 18 (9), 1434-1440 (2012).
  28. Dickson, B. M., Cornett, E. M., Ramjan, Z., Rothbart, S. B. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments. Methods Enzymol. 574, 53-77 (2016).
  29. Gatchalian, J., Fütterer, A., et al. Dido3 PHD modulates cell differentiation and division. Cell Rep. 4 (1), 148-158 (2013).
  30. Cai, L., Rothbart, S. B., et al. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell. 49 (3), 571-582 (2013).
  31. Rothbart, S. B., Dickson, B. M., et al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27 (11), 1288-1298 (2013).
  32. Ali, M., Rincón-Arano, H., et al. Molecular basis for chromatin binding and regulation of MLL5. Proc Natl Acad Sci U S A. 110 (28), 11296-11301 (2013).
  33. Kinkelin, K., Wozniak, G. G., Rothbart, S. B., Lidschreiber, M., Strahl, B. D., Cramer, P. Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue. Proc Natl Acad Sci U S A. 110 (38), 15277-15282 (2013).
  34. Klein, B. J., Piao, L., et al. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep. 6 (2), 325-335 (2014).
  35. Kim, H. -. S., Mukhopadhyay, R., et al. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep. 6 (5), 892-905 (2014).
  36. Greer, E. L., Beese-Sims, S. E., et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7 (1), 113-126 (2014).
  37. Andrews, F. H., Tong, Q., et al. Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Rep. 16 (12), 3195-3207 (2016).
  38. Sidoli, S., Lin, S., Karch, K. R., Garcia, B. A. Bottom-Up and Middle-Down Proteomics Have Comparable Accuracies in Defining Histone Post-Translational Modification Relative Abundance and Stoichiometry. Anal Chem. 87 (6), 3129-3133 (2015).
  39. Tsukada, Y., Ishitani, T., Nakayama, K. I. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 24 (5), 432-437 (2010).
  40. Tachibana, M., Sugimoto, K., Fukushima, T., Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 276 (27), 25309-25317 (2001).
  41. Wu, H., Chen, X., et al. Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res. 21 (2), 365-367 (2011).
  42. Koch, C. M., Andrews, R. M., et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17 (6), 691-707 (2007).
  43. Okitsu, C. Y., Hsieh, J. C. F., Hsieh, C. -. L. Transcriptional Activity Affects the H3K4me3 Level and Distribution in the Coding Region. Mol Cell Biol. 30 (12), 2933-2946 (2010).
  44. Zentner, G. E., Tesar, P. J., Scacheri, P. C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21 (8), 1273-1283 (2011).
  45. Garske, A. L., Oliver, S. S., et al. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol. 6 (4), 283-290 (2010).
  46. Baker, M. Reproducibility crisis: Blame it on the antibodies. Nature. 521 (7552), 274-276 (2015).
  47. Bradbury, A., Plückthun, A. Reproducibility: Standardize antibodies used in research. Nature. 518 (7537), 27-29 (2015).
  48. Nguyen, U. T. T., Bittova, L., et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods. 11 (8), 834-840 (2014).
  49. Frank, R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron. 48 (42), 9217-9232 (1992).
  50. Hilpert, K., Winkler, D. F. H., Hancock, R. E. W. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc. 2 (6), 1333-1349 (2007).
  51. Kudithipudi, S., Kusevic, D., Weirich, S., Jeltsch, A. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays. J Vis Exp. (93), e52203 (2014).

Play Video

Cite This Article
Cornett, E. M., Dickson, B. M., Rothbart, S. B. Analysis of Histone Antibody Specificity with Peptide Microarrays. J. Vis. Exp. (126), e55912, doi:10.3791/55912 (2017).

View Video