Transcranial alternating current stimulation (tACS) is a promising tool for noninvasive investigation of brain oscillations, though its effects are not completely understood. This article describes a safe and reliable setup for applying tACS simultaneously with functional magnetic resonance imaging, which can increase understanding oscillatory brain function and effects of tACS.
Transcranial alternating current stimulation (tACS) is a promising tool for noninvasive investigation of brain oscillations. TACS employs frequency-specific stimulation of the human brain through current applied to the scalp with surface electrodes. Most current knowledge of the technique is based on behavioral studies; thus, combining the method with brain imaging holds potential to better understand the mechanisms of tACS. Because of electrical and susceptibility artifacts, combining tACS with brain imaging can be challenging, however, one brain imaging technique that is well suited to be applied simultaneously with tACS is functional magnetic resonance imaging (fMRI). In our lab, we have successfully combined tACS with simultaneous fMRI measurements to show that tACS effects are state, current, and frequency dependent, and that modulation of brain activity is not limited to the area directly below the electrodes. This article describes a safe and reliable setup for applying tACS simultaneously with visual task fMRI studies, which can lend to understanding oscillatory brain function as well as the effects of tACS on the brain.
Transcranial alternating current stimulation (tACS) is a noninvasive brain stimulation technique with promise for investigating neural oscillations and frequency-specific brain functions in healthy individuals as well as to study and modulate oscillations in clinical populations1. Using two or more conductive electrodes placed on the scalp, low current (1-2 mA peak-to-peak) sinusoidal waves are applied to the brain at a desired frequency to interact with ongoing neural oscillations. TACS studies have measured frequency- and task-specific behavioral or cognitive modulations including but not limited to motor function2, working memory performance3, somatosensation4, and visual perception5,6,7. Applying alternating current in a noninvasive manner has also resulted in functional improvement in neurological patients, such as tremor reduction in Parkinson's disease8, improved vision in optical neuropathy9, and improved rate of speech, sensory, and motor recovery after stroke10. Despite an increasing number of studies using tACS for research and evidence of its therapeutic potential in clinical settings, the effects of this technique are not fully characterized, and its mechanisms are not completely understood.
Simulations and animal studies can provide insight into the effects of alternating current stimulation at the cellular or neural network level under controlled conditions11,12, but given the state-dependence of effective stimulation techniques13,14, such studies do not reveal the whole picture. Combining tACS with neuroimaging techniques like electroencephalography (EEG)15,16,17, magnetoencephalography (MEG)18,19,20, or functional magnetic resonance imaging (fMRI)21,22,23,24 can inform about systems-level modulation of brain function. However, each combination comes with technological challenges, mainly due to stimulation-induced artifacts in the measurement of frequencies of interest15. Although the temporal resolution of fMRI cannot match EEG or MEG measurements, its spatial coverage and resolution in cortical and subcortical brain regions is superior.
Recently, in a combined tACS-fMRI study, we showed that effects of tACS on the blood oxygenation level dependent (BOLD) signal measured with fMRI are both frequency and task specific, and that the stimulation does not necessarily exert its greatest effect directly underneath the electrodes, but in regions more distant from the electrodes22. In a following study, we investigated the effect of tACS electrode position and frequency on network function using amplitude of low frequency fluctuations and resting-state functional connectivity, including using correlation seeds of the most directly stimulated regions, as derived from subject-based current density simulations. Most notably in this study, alpha (10 Hz) and gamma (40 Hz) stimulation often elicited opposite effects in network connectivity or on regional modulation23. Additionally, the resting-state network that was most affected was the left fronto-parietal control network. These studies highlight the potential for using fMRI to determine optimal parameters for effective, controlled stimulation. Also, they contribute to evidence that, aside from controlled parameters, such as task condition and timing, stimulation frequency, and electrode positions, there are subject-specific factors that influence the success of tACS. Examples of subject characteristics that translate as uncontrollable variables in optimizing stimulation parameters are intrinsic functional connectivity, endogenous oscillation peak frequency (e.g., individual alpha frequency), and skull and skin thickness25. Considering the current body of literature pertaining to tACS, more studies combining tACS with neural measurements such as neuroimaging are required to establish comprehensive procedures for effective brain stimulation techniques.
Herein, we describe a safe and reliable setup for experiments applying tACS simultaneously with fMRI of a visual task, with focus on aspects of the setup and execution that yield successfully synchronized tACS with artifact-free acquisition of fMRI data.
Here, we have described the procedure for a simultaneous tACS-fMRI experiment setup and execution using an MR-compatible tACS system. Some steps in this procedure require special attention, especially with respect to the subject setup. The MR-compatible stimulator and setup used in this experiment has a minimum impedance of approximately 12 kΩ with the cables, filter boxes, and electrodes only, and the manufacturer recommends 20 kΩ minimum impedance with electrodes connected to the subject; this requirement depends on stimulator product and manufacturer. When applying electrodes to the subject, if the impedance is too high, some steps can be taken to reduce this value aside from pressing the electrodes. For example, it may be easier to first cover the marked and cleaned locations on the scalp with electrode gel, including the hair, before pressing the electrode onto the scalp. This will ensure current spread across the non-conductive material; however, be careful to limit electrode gel coverage to approximately the same surface area as the electrodes to direct current spread to the desired region of stimulation. Pay particular attention to this if the electrodes are close together, because current shunting between the electrodes may occur through excess electrode gel contact. If the electrode is on the back of the head where the subject will be laying directly on it, special care must be taken to place pillows behind the head such that the subject will not grow uncomfortable as the experiment continues; this discomfort may not be a problem initially for the subject, however experience shows that pain arises and increases with time. Additionally, as with all fMRI experiments, subject motion introduces problematic confounds, so it is important that the subject is comfortable with all the cables and electrodes in place.
The most important aspect of the setup to consider is the noise potentially introduced into the MR environment that can induce image artifacts and distortions. Prior to the experiment, it is prudent to test for image artifacts with the whole tACS setup in place. A normal spherical phantom can be used, securing electrodes with electrode gel. It is important to provide some way for the current to travel between electrodes, which can be accomplished by applying a generous amount of electrode gel in a path from one electrode to the other. Run the entire experiment, as planned for the subject, including parameter variations such as frequency and current. During the scanning session, adjusting contrast and windowing to extremes in the image viewer on the MR scanner control computer allows easier visual detection of noise. When visually monitoring for noise before and during the experiment, noise may occur as spikes in the image with high intensity, patterns where signal should not be measured, or varying intensity over time, as examples. Acquiring fMRI data with the RF excitation pulse turned off gives information about scanner environment noise during scanning without acquiring the actual image signal (see Figure 2). This noise test can be done in every scanning session. If there are variations in the noise, check that all cables are intact and well connected to the stimulator, electrodes, and filter boxes. No cables should sit in loops. Noise or distortion can arise from broken cables, electrodes with metal contaminants in the rubber (despite being sold as MR-compatible), and faulty connections, among other possibilities. The stimulator is battery-driven to minimize electrical noise in the setup; ensure that it is fully charged before every experiment and that it stays on and connected throughout the experiment. TSNR in functional images will decrease around 5% with the stimulator connected, however, values should be stable across stimulation conditions22. Simultaneous transcranial electrical stimulation-fMRI tests on cadavers have shown that there are no artifacts associated with alternating current stimulation, which is an advantage compared to direct current stimulation30. Theoretically, this lack of artifacts can be explained by a net current of zero at the time the image is acquired30. However, for some of the experiments conducted in our lab, the acquisition time or TR is not a multiple of the stimulation frequency. After conducting the noise tests mentioned in this protocol and examining images for artifacts, which were not visible, we concluded that any difference in net current from zero is small and too negligible to induce artifacts.
Another critical point for successful experiments is that the presentation computer receives the trigger output of the scanner and that the stimulator receives the trigger from the presentation computer. Prior to the experiment, program the visual stimulus design and timing using the desired software. This program must use triggers to synchronize the visual stimulus presentation with the MR scanner and the stimulator; it initiates with a trigger that is output from the MR scanner and also sends output triggers to the stimulator at desired stimulation times. An easy way to check trigger communication during setup is to use an oscilloscope attached with a BNC cable to the scanner trigger output as well as the presentation computer output. In our setup, the MR scanner outputs a trigger (toggle) for every functional volume acquired, and the presentation computer outputs a signal as programmed through the presentation software. The analysis of a well-designed experiment rests critically on properly timed stimulation.
Some steps of this experiment may be adapted as necessary for the laboratory setting requirements. For example, this setup describes using a projector and mirrors for visual stimulus presentation, however the visual stimulus output device can be MR-safe liquid-crystal-display goggles or an MR-safe monitor, chosen based on experiment and lab preferences or limitations. Also, MRI scan parameters should be tailored to the experiment. It is worthwhile to note that attention should be given to the appropriate choice of experimental control for tACS, although a straightforward answer does not exist. A short sham stimulation of 30 seconds can mimic the somatosensation induced by tACS that diminishes eventually with prolonged stimulation; however, some studies show that even short periods of stimulation can induce oscillatory entrainment12. Another possible control that can be used for tACS is to stimulate using a non-effective frequency, or, in other words, a different frequency from the one of interest. The exception here would be that somatosensation and phosphene perception vary according to stimulation frequency31. Finally, regarding subjective experiences of stimulation, tACS-induced phosphenes vary across individuals, so in order to best capture subject variability, consider using a detailed rating system for phosphene perception, and spend some time with the subject describing the various features of phosphenes (e.g., location, intensity) that can arise so that the subject can attentively evaluate his or her experience during stimulation32,33.
The representative results shown here suggest that tACS effects are current dependent, frequency dependent, and that modulation is not limited to the regions below the electrodes, but extends to distant, likely functionally connected regions. One limitation of this technique is the temporal resolution of fMRI as well as of the BOLD response. The data acquisition and the hemodynamic response are not as fast as the stimulation frequency or electrical activity of the brain, so direct interactions with frequency-specific effects of tACS cannot be measured. However, given that the greatest share of scientific literature of tACS effects is of behavioral studies, and that tACS obviously affects a whole, complicated neural system, it is clear that simultaneous tACS-fMRI experiments have much to offer for informing us about tACS effects in the brain. EEG and MEG offer insights on the level of temporal resolutions that match those of neural activity. However, EEG and MEG suffer from spatial resolution and cortical depth limitations or computationally intensive source-reconstruction techniques. Stimulation frequency and harmonic artifacts overriding brain signals of interest recorded at the same frequencies further complicate EEG and MEG analyses. Innovative workarounds have been applied to tackle some of these challenges. Helfrich et al. employed a novel technique to remove the tACS artifact from EEG data using an artifact template subtraction and principle component analysis15. They showed that 10 Hz tACS applied parieto-occipitally increases alpha activity in the parietal and occipital cortices and induces synchrony in cortical oscillators functioning at similar intrinsic frequencies. Witkowski and colleagues applied amplitude-modulated tACS and successfully created MEG-based cortical maps of entrained brain oscillations34. With the goal of applying tACS in research for better understanding normal and abnormal brain function, and eventually clinically for diagnostics or therapeutics, tACS should be separately combined with EEG, MEG, and fMRI to complementarily establish best practices for specific desired effects that can be tailored specifically to individuals. When such practices are established, effective investigations can be carried out to better understand the function of neural oscillations (e.g., clearly defining functional roles and relationships of different frequency bands) and their modulation with tACS (e.g., whether the mechanism occurs through entrainment or plastic changes35).
Considering future directions, the setup described here is tailored for fMRI experiments studying perception or cognition, as the structure-from-motion study described here and others have demonstrated. Cabral-Calderin and colleagues showed that activation in regions of the occipital cortex was dependent upon task and tACS frequency in a video-watching versus finger-tapping experiment22. In a simultaneous tACS-resting-state fMRI study, Cabral-Calderin and colleagues showed frequency-dependent effects of tACS on intrinsic functional connectivity and resting state networks23. Vosskuhl et al. combined tACS and fMRI to show BOLD decrease during a visual vigilance task at individual alpha frequency stimulation24. Alekseichuk and colleagues showed that immediate aftereffects of 10 Hz tACS modulate the BOLD signal during a visual perception of checkered rings and wedges, indicating a change in the neural metabolism of a passive perception task36. These studies set the stage for simultaneous tACS-fMRI studies to probe functional mechanisms on many levels, from metabolism to cognition. At such an early stage in the use of tACS for translational research, there is much potential for simultaneous tACS-fMRI experiments to add to the understanding of both the stimulation technique and the contribution of oscillations to cognitive functions.
The authors have nothing to disclose.
We thank Ilona Pfahlert and Britta Perl for technical assistance during functional imaging experiments and Severin Heumüller for excellent computer support. This work was supported by the Herman and Lilly Schilling Foundation and the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).
None | |||
DC-Stimulator MR | NeuroConn, Ilmenau, Germany | includes: inner filter box, outer filter box, MR-safe electrode and stimulator cables (1 each), stimulator, 2 surface electrodes, and one shielded LAN cable; NOTE: This manuscript describes tACS-fMRI setup with NeuroConn's MR-safe stimulator, but such a stimulator from another manufacturer would be acceptable, with adaptations made based on manufacturer specifications. | |
3 tesla Tim Trio MR scanner | Siemens, Erlangen, Germany | ||
presentation computer | |||
presentation software (e.g., Matlab) | The Mathworks, Natick, USA | ||
shielded LAN cable | |||
projector | InFocus Corporation, Wilsonville, USA | IN-5108 | |
Ten20 Electrode Paste | Weaver and Co., Aurora, USA | ||
EEG cap – EASYCAP 32-channel system | Brain Products GmbH, Germany | ||
tape measure | |||
marker | |||
pillows | |||
button response box | Current Designs, Philadelphia, USA | ||
isopropyl alcohol | |||
cotton pads | |||
tape | |||
MR-safe sand bags | Siemens, Erlangen, Germany | ||
MR-safe mirrors | Siemens, Erlangen, Germany | ||
MR-safe screen | can be built in local machine shop to fit site-specific parameters | ||
E-A-Rsoft ear plugs | 3M, Bracknell, UK |