As células-tronco pluripotentes induzidas por humanos (hiPSCs) são consideradas uma ferramenta poderosa para a triagem de drogas e substâncias químicas e para o desenvolvimento de novos modelos in vitro para testes de toxicidade, incluindo neurotoxicidade. Aqui, um protocolo detalhado para a diferenciação de hiPSCs em neurônios e glia é descrito.
As células estaminais pluripotentes humanas podem se diferenciar em vários tipos de células que podem ser aplicadas a ensaios de toxicidade in vitro baseados em humanos. Uma grande vantagem é que a reprogramação de células somáticas para produzir células-tronco pluripotentes induzidas por humanos (HiPSCs) evita as questões éticas e legislativas relacionadas ao uso de células estaminais embrionárias humanas (hESCs). Os HiPSCs podem ser expandidos e diferenciados de forma eficiente em diferentes tipos de células neuronais e gliais, servindo como sistemas de teste para testes de toxicidade e, em particular, para a avaliação de diferentes caminhos envolvidos na neurotoxicidade. Este trabalho descreve um protocolo para a diferenciação de hiPSCs em culturas mistas de células neuronais e gliais. As vias de sinalização que são reguladas e / ou ativadas pela diferenciação neuronal são definidas. Esta informação é fundamental para a aplicação do modelo celular ao novo paradigma de teste de toxicidade, no qual os produtos químicos são avaliados com base na sua capacidade de peRturb caminhos biológicos. Como uma prova de conceito, a rotenona, um inibidor do complexo respiratório mitocondrial I, foi utilizada para avaliar a ativação da via de sinalização Nrf2, um regulador chave do mecanismo de defesa celular anti-oxidante-resposta-elemento- (ARE) contra o estresse oxidativo .
O relatório do Conselho Nacional de Pesquisa dos EUA 1 prevê um novo paradigma de teste de toxicidade em que o teste de toxicidade regulatória seria deslocado de uma abordagem que dependesse de alterações fenotípicas observadas em animais para uma abordagem focada em ensaios in vitro mecanicistas usando células humanas. Os derivados de células estaminais pluripotentes (PSC) podem representar alternativas aos modelos de células cancerosas, pois as células obtidas podem se assemelhar mais às condições fisiológicas dos tecidos humanos e fornecer ferramentas mais relevantes para estudar os efeitos adversos induzidos por produtos químicos. Os dois principais tipos de culturas de PSC que são mais promissores para o teste de toxicidade são as células estaminais embrionárias humanas (hESCs) e células-tronco pluripotentes induzidas por humanos (HiPSCs), que atualmente são amplamente utilizadas nas áreas de pesquisa básica e medicina regenerativa 2 , 3 . Esta experiência agora pode ser aproveitada para o desenvolvimento de uma nova classe de toxoloTestes in vitro in vitro destinados a identificar as vias fisiológicas perturbadas envolvidas no desenvolvimento de efeitos adversos in vivo . No entanto, os métodos de teste para avaliações de segurança regulamentares baseadas em hESCs não deverão ser aceitos por todos os Estados-Membros da UE e por países em todo o mundo devido a possíveis preocupações éticas e diversas políticas legislativas nacionais que regulam o uso de células derivadas de embriões.
Os hiPSCs compartilham características semelhantes aos hESCs 4 , 5 e possuem grande potencial para métodos in vitro , tanto para identificar alvos terapêuticos como para avaliações de segurança. Além disso, a tecnologia hiPSC mitiga as restrições de um pool de doadores limitado e as preocupações éticas associadas às células derivadas de embriões. Um grande desafio para o HiPSCs é a demonstração de que essas células podem gerar de forma reprodutiva uma gama significativa de derivados de células toxicologicamente relevantes,Com características e respostas típicas dos tecidos humanos. Os níveis predefinidos dos marcadores selecionados geralmente são usados para caracterizar as populações celulares após o processo de diferenciação e fornecer informações sobre a estabilidade do processo de diferenciação.
Trabalhos anteriores avaliaram a adequação de hiPSCs para gerar culturas mistas de células neuronais e gliais e avaliar os efeitos da rotenona, um inibidor do complexo respiratório mitocondrial I, na ativação da via Nrf2, um regulador chave dos mecanismos de defesa antioxidante em Muitos tipos de células 6 , 7 .
Este trabalho descreve um protocolo usado para a diferenciação de HiPSCs em culturas mestiças neuronais e gliais, fornecendo detalhes sobre as vias de sinalização (gene e nível de proteína) que são ativadas na diferenciação neuronal / glial. Além disso, o trabalho mostra resultados representativos demonstrando como issoO modelo de células neuronais e gliais derivadas de HiPSC pode ser usado para avaliar a ativação da sinalização Nrf2 induzida por tratamento agudo (24 h) com rotenona, permitindo a avaliação da indução do estresse oxidativo.
Os fibroblastos IMR90 foram reprogramados em hiPSCs em I-Stem (França) pela transdução viral de 2 fatores de transcrição (Oct4 e Sox2) usando vetores pMIG 6 . Modelos hiPSC análogos também podem ser aplicados. Os protocolos descritos abaixo resumem todos os estágios de diferenciação de hiPSCs em células-tronco neurais (NSCs) e mais em culturas mistas de neurônios pós-mitóticos e células gliais (etapas 1 e 2, veja também o site EURL ECVAM DBALM para uma descrição detalhada de O protocolo) 8 .
Um protocolo adicional para o isolamento, expansão, criopreservação e maior diferenciação de NSCs em neurônios misturados e células gliais é detalhado nas etapas 3 e 4 (também se referem ao EURL ECVAM DBALM nósBsite para uma descrição detalhada deste protocolo) 9 . O Passo 5 descreve as análises que podem ser feitas para avaliar a identidade fenotípica das células durante os vários estágios de compromisso e diferenciação.
Este trabalho descreve um protocolo robusto e relativamente rápido para a diferenciação de IMR90-hiPSCs em neurônios pós-mitóticos e células gliais. Os protocolos de diferenciação neuronal previamente publicados baseados em hESCs e HiPSCs geralmente produzem altas porcentagens de precursores neurais 25 , 26 e um número significativo de células alvo neuronais 27 , 28 , 29 , 30 , 31 , 32 , 33 . Analogamente, o protocolo de diferenciação descrito aqui é adequado para gerar culturas heterogêneas de células neuronais GABAérgicas, glutamatérgicas e dopaminérgicas, juntamente com glia e uma proporção discreta de células nestin + . A presença de células neurais glutamatérgicas (~ 35-42%) e GABAérgicas (~ 15-20%) sugere queEssa cultura possui características anteriores do cérebro, características corticais e a presença de um número discreto de neurônios dopaminérgicos (~ 13-20%) também pode indicar especificidade mesencéfalo. Além disso, a permanência de uma proporção modesta de células nestin + pode ser adequada para o estudo da neurogênese e os possíveis efeitos de substâncias químicas em NSCs, que são principalmente confinados tanto ao hipocampo quanto à zona subventricular (SVZ) do prosencéfalo 34 . Outras análises imunocitoquímicas e de expressão gênica ajudariam a definir melhor a especificidade regional dos derivados de células diferenciadas.
Os dois passos mais críticos no protocolo de diferenciação descrito neste documento são: (i) o corte de colônias de hiPSC em fragmentos homogêneos (o que é crítico para a geração de EBs com tamanhos homogêneos) e (ii) o corte de estruturas neuroectodérmicas (rosetas ) Para diferenciação NSC, que requer habilidade manual significativaE precisão para evitar a coleta de células mesodérmicas e endodérmicas que podem reduzir as proporções de neurônios e células gliais obtidas após a diferenciação.
É crucial caracterizar os fenótipos das células durante a expansão (como colônias indiferenciadas ou NSCs) e durante todas as etapas de diferenciação. Em particular, os perfis de expressão de genes e proteínas dos derivados das células neuronais / gliais devem mostrar uma regulação positiva e ativação de caminhos de sinalização relacionados aos neurônios, enquanto que a expressão de marcadores de pluripotência deve ser diminuída.
A geração de EBs e derivados neuroectodermais (rosetas) podem ser desafiantes manualmente e propensos a variabilidade. Por esse motivo, desenvolvemos um protocolo para a expansão de NSC derivadas de roseta e sua maior diferenciação em células neuronais / gliais.
Possíveis limitações deste protocolo de diferenciação são principalmente (i) a porcentagem relativamente baixa de dDerivados gliais indiferenciados e (ii) Falta de funções de rede neuronal maduras (como mostra a falta de explosões). Além disso, subpopulações específicas de astrocitos podem funcionar como progenitores primários ou NSCs 35 . Embora não tenham sido observadas células níquel / GFAP duplo-positivas nesta cultura de células diferenciadas (dados não apresentados), a hipótese de que as células GFAP + nestas culturas são progenitores astrócitos e astrócitos. É plausível que, ao ampliar o tempo de diferenciação, o número de astrocitos pode aumentar, e sua morfologia pode tornar-se mais madura, como já foi indicado por trabalhos anteriores do grupo 36 , 37 de Zhang.
No novo paradigma de teste de toxicidade, o conhecimento sobre perturbações induzidas por produtos químicos das vias biológicas é de extrema importância na avaliação da adversidade química. Portanto, os sistemas de teste in vitro devem ser capazes deRelacionar efeitos adversos com os distúrbios das vias de sinalização, de acordo com o conceito de via de desfecho adverso (AOP). Como uma prova de conceito, a rotenona pode ser usada para avaliar a ativação da via Nrf2, que está envolvida na defesa celular contra o estresse oxidativo ou eletrofílico 38 e o estresse oxidativo é um evento chave importante e comum em vários AOPs relevantes para Neurotoxicidade no desenvolvimento e adulto 39 .
Rotenone deve induzir a ativação da via Nrf2, que pode ser demonstrada pela translocação nuclear da proteína Nrf2 e pelo aumento da expressão de enzimas alvo Nrf2, incluindo NQO1 e SRXN1. Verificou-se que a rotenona induz um aumento dose-dependente de níveis de proteína GFAP, indicativo de ativação de astrocitos 40 , 41 . Rotenone também diminui o número de células dopaminérgicas (TH + ), que está de acordo com previEstudos in vitro e in vivo que mostram morte celular dopaminérgica dependente de rotenona, uma vez que este tipo de neurônio é particularmente sensível ao estresse oxidativo 21 , 22 , 23 .
Em conclusão, este modelo de cultura celular neuronal e glial derivado de HiPSC é uma ferramenta valiosa para avaliar os efeitos neurotóxicos de produtos químicos que provocam estresse oxidativo, resultando na ativação da via Nrf2. Como este protocolo de diferenciação permite a geração de culturas mistas de células neuronais (neurônios GABAérgicos, dopaminérgicos e glutamatérgicos) e astrócitos, pode ser adequado para estudar a interferência entre neurônios e glia em condições fisiológicas e patológicas, como em doenças neurodegenerativas ( Por exemplo, doença de Parkinson). Além disso, a presença de uma proporção significativa de NSCs pode ajudar a avaliar os possíveis efeitos de produtos químicos no prog neuralEnors, que são conhecidos como o alvo principal de mutações ou infecções virais quimicamente induzidas 42 .
The authors have nothing to disclose.
Os autores agradecem ao Dr. Marc Peschanski (I-Stem, Évry, França), por fornecer os IMR90-hiPSCs; Dr. Giovanna Lazzari e Dr. Silvia Colleoni (Avantea srl, Cremona, Itália); Dr. Simone Haupt (Universidade de Bonn, Alemanha); Dr. Tiziana Santini (Instituto Italiano de Tecnologia, Roma), para fornecer aconselhamento sobre a avaliação da coloração por imunofluorescência; Dr. Benedetta Accordi, Dr. Elena Rampazzo e Dr. Luca Persano (Universidade de Pádua, Itália), por suas contribuições para a análise de RPPA e validação de anticorpos. Financiamento: este trabalho foi apoiado pelo projeto financiado pela UE "SCR & Tox" (Acordo de Subsídio N ° 266753).
Complete hiPSC medium: | |||
mTeSR1 Basal Medium | Stem Cell Technologies | 05851 | (Step 1.2.6). Complete mTeSR1 is stable when stored at 2 – 8°C for up to 2 weeks. 5X Supplements can be dispensed into working aliquots and stored at -20°C. Use frozen aliquots within 3 months. |
mTeSR1 5X Supplements | Stem Cell Technologies | 05852 | |
Matrigel hESC-qualified Matrix | Corning | 354277 | 1:100 (Step 1.1). Thaw Matrigel on ice, prepare 200 ul aliquots and store them in -80°C. For coating, dilute 200ul aliquot in 20 ml of DMEM/F12 medium. |
CryoStem Freezing Medium | Stemgent | 01-0013-50 | Freeze ~ 100 fragments/250 ul/vial (Step 1.2.1) |
Name | Company | Catalog Number | Comments |
hiPSC EB medium: | |||
Knockout DMEM | Thermo-Fisher | 10829-018 | (Step 2.1.7) |
Knockout Serum Replacement (KOSR) | Thermo-Fisher | 10828-028 | 20% final concentration (Step 2.1.7) |
Non-Essential Amino Acids | Thermo-Fisher | 11140-035 | (Step 2.1.7) |
Penicillin/Streptomycin | Thermo-Fisher | 15140-122 | 50 U/mL final concentration (Step 2.1.7) |
L-Glutamine 200 mM Solution | Thermo-Fisher | 25030-081 | 2 mM final concentration (Step 2.1.7) |
β-Mercaptoethanol | Thermo-Fisher | 31350-010 | 50 µM final concentration (Step 2.1.7) |
Name | Company | Catalog Number | Comments |
Complete neuroepithelial induction medium (NRI): | |||
DMEM/F12 | Thermo-Fisher | 3133-038 | (Step 2.3.1) |
Non-Essential Amino Acids | Thermo-Fisher | 11140-035 | (Step 2.3.1) |
N2 Supplement | Thermo-Fisher | 17502-048 | (Step 2.3.1) |
Penicillin/Streptomycin | Thermo-Fisher | 15140-122 | 50 U/mL final concentration (Step 2.3.1) |
Heparin Grade I-A, ≥180 USP units/mg | Sigma-Aldrich | H3149-100KU | 2 µg/ml final concentration (Step 2.3.1) |
bFGF | Thermo-Fisher | 13256-029 | 20 ng/ml final concentration added before use (Step 2.3.1) |
Matrigel Basement Membrane Matrix | Corning | 354234 | 1:100 (Step 2.2). Thaw Matrigel on ice, prepare 200 ul aliquots and store them in -80°C. For coating, dilute 200 ul aliquot in 20 ml of cold DMEM/F12 medium. |
Laminin | Sigma-Aldrich | L2020 | 1:100 (Step 2.2). Dilute in PBS 1X. |
Name | Company | Catalog Number | Comments |
Complete Neuronal Differentiation medium (ND): | |||
Neurobasal Medium | Thermo-Fisher | 21103049 | (Step 2.4.11) |
B-27 Supplements (50x) | Thermo-Fisher | 17504044 | (Step 2.4.11) |
N2 Supplement | Thermo-Fisher | 17502-048 | (Step 2.4.11) |
Penicillin/Streptomycin | Thermo-Fisher | 15140-122 | 50 U/mL final concentration (Step 2.4.11) |
GDNF | Thermo-Fisher | PHC7045 | 1 ng/ml final concentration. Added before use. (Step 2.4.11) |
BDNF | Thermo-Fisher | PHC7074 | 2.5 ng/ml final concentration. Added before use. (Step 2.4.11) |
Name | Company | Catalog Number | Comments |
Neural induction medium (NI): | |||
DMEM/F12 | Thermo-Fisher | 3133-038 | (Step 3.3) |
Non-Essential Amino Acids | Thermo-Fisher | 11140-035 | (Step 3.3) |
N2 Supplement | Thermo-Fisher | 17502-048 | (Step 3.3) |
Penicillin/Streptomycin | Thermo-Fisher | 15140-122 | 50 U/mL final concentration (Step 3.3) |
Heparin Grade I-A, ≥180 USP units/mg | Sigma-Aldrich | H3149-100KU | 2 µg/ml final concentration (Step 3.3) |
B-27 Supplement (50X), minus vitamin A | Thermo-Fisher | 12587010 | (Step 3.3) |
L-Glutamine 200 mM Solution | Thermo-Fisher | 25030-081 | 2 mM final concentration (Step 3.3) |
bFGF | Thermo-Fisher | 13256-029 | 10 ng/ml final concentration. Added before use (Step 3.3) |
EGF | Thermo-Fisher | PHG6045 | 10 ng/ml final concentration. Added before use (Step 3.3) |
BDNF | Thermo-Fisher | PHC7074 | 2.5 ng/ml final concentration. Added before use (Step 3.3) |
Defined Trypsin Inhibitor (DTI) | Thermo-Fisher | R007-100 | Pre-warm at 37°C. Add an equal amount of DTI to Trypsin-EDTA (Step 3.10) |
Trypsin-EDTA (0.5%), no phenol red | Thermo-Fisher | 15400054 | 1:10. Dilute Trypsin-EDTA in PBS 1x (without calcium and magnesium), pre-warm the solution at 37°C (Step 3.8) |
CryoStor cell cryopreservation medium | Sigma-Aldrich | C2874-100ML | (Step 4.2) |
Trypan Blue (0.4%) | Sigma-Aldrich | T8154-100ML | multiple manufacturers/suppliers |
Name | Company | Catalog Number | Comments |
TaqMan Probesets and reagents for gene expression analysis: | |||
RNAqueous-Micro kit | Thermo-Fisher | AM1931 | (Step 5.1.6) |
High Capacity cDNA Reverse Transcription Kits | Thermo-Fisher | 4368814 | |
TaqMan Gene Expression Master Mix | Thermo-Fisher | 4369016 | |
GFAP | Thermo-Fisher | Hs00909233_m1 | |
MAP2 | Thermo-Fisher | Hs00258900_m1 | |
NQO1 | Thermo-Fisher | Hs02512143_s1 | |
SRXN1 | Thermo-Fisher | Hs00607800_m1 | |
HMOX1 | Thermo-Fisher | Hs01110250_m1 | |
GSR | Thermo-Fisher | Hs00167317_m1 | |
PAX6 | Thermo-Fisher | Hs01088112_m1 | |
NES | Thermo-Fisher | Hs00707120_s1 | |
GRIA1 | Thermo-Fisher | Hs00181348_m1 | |
GAP43 | Thermo-Fisher | Hs00967138_m1 | |
GABRA3 | Thermo-Fisher | Hs00968132_m1 | |
GABRA1 | Thermo-Fisher | Hs00168058_m1 | |
NR4A2 | Thermo-Fisher | Hs00428691_m1 | |
TH | Thermo-Fisher | Hs00165941_m1 | |
GAPDH | Thermo-Fisher | Hs02758991_g1 | |
ACTB | Thermo-Fisher | Hs99999903_m1 | |
MAPT | Thermo-Fisher | Hs00902194_m1 | |
SYP | Thermo-Fisher | Hs00300531_m1 | |
NANOG | Thermo-Fisher | Hs04260366_g1 | |
POU5F1 (OCT4) | Thermo-Fisher | Hs04195369_s1 | |
SOX1 | Thermo-Fisher | Hs01057642_s1 | |
AFP | Thermo-Fisher | Hs00173490_m1 | |
KRT18 | Thermo-Fisher | Hs01941416_g1 | |
NPPA | Thermo-Fisher | Hs00383230_g1 | |
T | Thermo-Fisher | Hs00610080_m1 | |
NCAM1 | Thermo-Fisher | Hs00941821_m1 | |
NR4A1 | Thermo-Fisher | Hs00374226_m1 | |
PHOX2A | Thermo-Fisher | Hs00605931_mH | |
PHOX2B | Thermo-Fisher | Hs00243679_m1 | |
NARG2 | Thermo-Fisher | Hs00973298_g1 | |
SLC18A3 | Thermo-Fisher | Hs00268179_s1 | |
SLC5A7 | Thermo-Fisher | Hs00222367_m1 | |
ISL1 | Thermo-Fisher | Hs00158126_m1 | |
LHX3 | Thermo-Fisher | Hs01033412_m1 | |
TaqMan Human Protein Kinase Array | Thermo-Fisher | 4418721 | |
Name | Company | Catalog Number | Comments |
Antibodies and reagents for immunostaining: | |||
B-III-tubulin (Tuj1) | Covance | MMS-435P | 1:500 (Step 5.2.5). Other antibodies may also be used. |
MAP2 | Sigma Aldrich | M4403 | 1:500 |
NF200 | Sigma Aldrich | N4142 | 1:1000 |
GFAP | Acris Antibodies GmbH | AP02002SU-N | 1:500 |
Nestin | Sigma-Aldrich | N5413 | 1:200 |
synaptophysin (SYN) | Abcam | AB14692 | 1:200 |
Tau | Thermo-Fisher | MA5-12808 | 1:100 |
Nrf2 | Abcam | AB62352 | 1:200 |
Keap1 | Abcam | AB66620 | 1:200 |
sulfiredoxin1 (SRXN1) | Abcam | AB92298 | 1:200 |
NAD(P)H quinone oxidoreductase 1 (NQO1) | Abcam | AB2346 | 1:200 |
OCT4 | Millipore | MAB4401 | 1:100 |
SSEA3 | Millipore | MAB4303 | 1:100 |
Tra1-60 | Millipore | MAB4360 | 1:250 |
Tyrosine hydroxylase (TH) | Millipore | AB152 | 1:200 |
Gamma-aminobutyric acid (GABA) | Sigma-Aldrich | A0310 | 1:100 |
Vesicular glutamate transporter 1 (VGlut1) | Abcam | AB72311 | 1:500 |
Paraformaldehyde | Sigma-Aldrich | P6148-500G | 4% (4% formaldehyde can also be used) |
DPBS, no calcium, no magnesium | Thermo-Fisher | 14190144 | |
Triton-X-100 Solution | Sigma-Aldrich | 93443-100ML | 0.1% |
BSA 35% | Sigma-Aldrich | A7979-50ML | 3.5% |
Donkey anti-Rabbit IgG (H+L) Cross Adsorbed Secondary Antibody, DyLight 594 conjugate | Thermo-Fisher | SA5-10040 | 1:500. (Step 5.2.7) Other fluorochrome-conjugated secondary antibodies may also be used. In this case, appropriate dilutions should be tested by the enduser. |
Donkey anti-Mouse IgG (H+L) Cross Adsorbed Secondary Antibody, DyLight 488 conjugate | Thermo-Fisher | SA5-10166 | 1:500 |
Donkey anti-Goat IgG (H+L) Cross Adsorbed Secondary Antibody, DyLight 488 conjugate | Thermo-Fisher | SA5-10086 | 1:500 |
DAPI Solution (1 mg/ml) | Thermo-Fisher | 62248 | 1:1000 (Step 5.2.7) |
Name | Company | Catalog Number | Comments |
Antibodies for Reverse Phase Protein Array (RPPA): | |||
4E-BP1 (S65) | Abcam | AB81297 | 1:250 (Note after step 5.2.8) |
Akt (T308) | Cell Signaling | 9275 | 1:100 |
Akt (S473) | Cell Signaling | 9271 | 1:100 |
AMPKalpha (T172) | Cell Signaling | 2531 | 1:100 |
AMPKbeta1 (S108) | Cell Signaling | 4181 | 1:100 |
ATF-2 (T71) | Cell Signaling | 9221 | 1:100 |
c-Jun (S63) | Cell Signaling | 9261 | 1:200 |
c-Jun (S73) | Cell Signaling | 9164 | 1:200 |
c-Kit (Y719) | Cell Signaling | 3391 | 1:250 |
CREB (S133) | Cell Signaling | 9191 | 1:100 |
EGFR (Y1068) | Cell Signaling | 2234 | 1:50 |
ErbB2/HER2 (Y1248) | Cell Signaling | 2247 | 1:100 |
ERK 1/2, p44/42 (T202/Y204) | Cell Signaling | 9101 | 1:2000 |
GSK-3alpha (S21) | Cell Signaling | 9337 | 1:50 |
Jak1 (Y1022/1023) | Cell Signaling | 3331 | 1:100 |
Lck (Y505) | Cell Signaling | 2751 | 1:500 |
LKB1 (S428) | Cell Signaling | 3051 | 1:100 |
mTOR (S2448) | Cell Signaling | 5536 | 1:100 |
NFkB p65 (S536) | Cell Signaling | 3031 | 1:50 |
p70 S6 Kinase (T389) | Cell Signaling | 9205 | 1:200 |
PDK1 (S241) | Cell Signaling | 3061 | 1:100 |
PKA C (T197) | Cell Signaling | 4781 | 1:250 |
PRAS40 (T246) | BioSource | 44-1100 | 1:2000 |
PTEN (S380) | Cell Signaling | 9551 | 1:500 |
Smad1 (S463/465), Smad5 (S463/465), Smad8 (S426/428) | Cell Signaling | 9511 | 1:500 |
Src (Y527) | Cell Signaling | 2105 | 1:500 |
Src Family (Y416) | Cell Signaling | 2101 | 1:200 |
Stat1 (Y701) | Cell Signaling | 9171 | 1:200 |
Stat3 (S727) | Cell Signaling | 9134 | 1:200 |
Zap-70 (Y319) | Enogene | E011159 | 1:100 |
βCatenin (S33/37/T41) | Cell Signaling | 9561 | 1:250 |
CREB | Upstate Biotechnologies | 06-863 | 1:100 |
Fos B | Cell Signaling | 2251 | 1:200 |
GRB2 | Cell Signaling | 3972 | 1:2000 |
HSP70 | Stressgen | SPA-810 | 1:100 |
c-Jun | Cell Signaling | 9165 | 1:100 |
Kip1/p27 | BD | 610241 | 1:100 |
Lck | Cell Signaling | 2984 | 1:250 |
Mcl-1 | Cell Signaling | 4572 | 1:80 |
Musashi | Cell Signaling | 2154 | 1:100 |
NOTCH1 | Cell Signaling | 3439 | 1:100 |
PTEN | Cell Signaling | 9552 | 1:500 |
SGK1 | Abnova | PAB4590 | 1:250 |
Zap-70 | Cell Signaling | 2705 | 1:250 |
β-Catenin | Abcam | AB32572 | 1:1000 |
Dll4 | Abcam | AB7280 | 1:500 |
Shh | Abcam | AB53281 | 1:250 |
HIF-1α | BD | 610958 | 1:50 |
NUMB PAN-ISO | Upstate Biotechnologies | 07-207 | 1:400 |
NUMB-L | Chemicon | AB15145 | 1:750 |
Cyclin B | BD | 610220 | 1:75 |
c-Myc | Calbiochem | OP-10 | 1:100 |
BCIP/NBT Kit | Thermo-Fisher | 002209 | (Note after step 5.2.8). Kit used to measure alkaline phosphatase activity, similar kits can be used. |
Name | Company | Catalog Number | Comments |
Antibodies for Flow Cytometry: | |||
SSEA1 Antibody, Pacific Blue conjugate | Thermo-Fisher | MHCD1528 | 1:100 (Note after step 5.2.8) |
SSEA4 Antibody (MC813-70), Alexa Fluor 647 | Thermo-Fisher | SSEA421 | 1:100 |
Name | Company | Catalog number | Comments |
Specific instruments, tools and softwares: | |||
Countess Automated Cell Counter | Thermo-Fisher | C10227 | Neubauer chamber or other suitable glass hemocytometer can be used. |
MEA1060-Inv-BC | Multichannel Systems | MEA1060-Inv-BC | (Step 5.3) |
MEA1060-BC control software | Multichannel Systems | MEA1060-BC | (Step 5.3) |
NeuroExplorer | Multichannel Systems | NeuroExplorer (NE) | (Step 5.3) For post-processing of MEA data |
Multielectrode arrays (MEA) | Multichannel Systems | 60MEA100/10iR-Ti-gr | (Step 5.3) Single-well MEA chip |
ArrayScan XTI High Content Platform | Thermo-Fisher | ASN00002P | (Step 5.2.8) Mean fluorescence can be quantified by using specific ArrayScan algorithms (e.g., Cytotoxicity V.4 and NucTrans V.4 bioapplications). It is recommended to take minimum 20 pictures/well, and have 7-8 internal replicates per condition |
7900HT Fast Real-Time PCR System | Thermo-Fisher | 4351405 | (Step 5.1.6) |
BD ULTRA-FINE Needle Insulin Syringe (with 30G needle) | BD | 328280 | (Steps 1.3.1, 2.1.2, and 2.4.1) |
StemPro EZPassage Disposable Stem Cell Passaging Tool | ThermoFisher | 23181010 | This colony cutting tool can be used as an alternative to the use of 30G needle 1 mL syringes (Step 1.3.1) |
Ultra-Low attachment Petri dish (60 mm) | Corning | 10010582 | (Step 2.1.8) Also other brands can be used. |
Mr. Frosty Freezing container | Sigma-Aldrich | C1562-1EA |