Ictus ischemico è un evento complesso in cui il contributo specifico degli astrociti nella regione colpite del cervello esposto alla privazione di ossigeno glucosio (OGD) è difficile da studiare. Questo articolo introduce una metodologia per ottenere gli astrociti isolati e studiare la loro reattività e la proliferazione in condizioni OGD.
Ictus ischemico è una lesione complessa del cervello causata da un trombo o embolo che ostruisce il flusso di sangue alle parti del cervello. Questo porta alla privazione di ossigeno e glucosio, che causa guasto di energia e morte neuronale. Dopo un insulto di colpo ischemico, astrociti diventano reattivi e proliferano attorno al sito di lesione, come si sviluppa. In questo scenario, è difficile studiare il contributo specifico dei astrocytes per la regione del cervello esposto ad ischemia. Di conseguenza, questo articolo introduce una metodologia per studiare la reattività Astrocita primario e proliferazione sotto un modello in vitro di un ambiente di ischemia-simile, chiamato privazione di ossigeno glucosio (OGD). Gli astrociti sono stati isolati da 1-4 giorno-vecchi ratti neonatali e il numero di cellule astrocytic aspecifica è stata valutata utilizzando Astrocita marcatore selettivo della proteina acida fibrillare gliale (GFAP) e macchiatura nucleare. Il periodo in cui gli astrociti sono sottoposti alla condizione OGD può essere personalizzato, così come la percentuale di ossigeno a che sono esposti. Questa flessibilità permette agli scienziati di caratterizzare la durata della condizione ischemica-come in diversi gruppi di cellule in vitro. Questo articolo discute i tempi di consegna di OGD che inducono la reattività di astrociti, morfologia ipertrofica e proliferazione come misurato dall’immunofluorescenza usando proliferando Cell Nuclear Antigen (PCNA). Oltre alla proliferazione, astrociti subiscono l’energia e lo sforzo ossidativo e rispondono agli OGD attraverso il rilascio di fattori solubili nel mezzo delle cellule. Questo mezzo possa essere raccolte e utilizzato per analizzare gli effetti delle molecole rilasciate dai astrocytes in colture neuronali primarie senza interazione cellula–cellula. In sintesi, questo modello della coltura cellulare primaria in modo efficiente consente di comprendere il ruolo degli astrociti isolati dopo un danno.
Ictus è definito come “un’acuta disfunzione neurologica di origine vascolare con sviluppo rapido o improvviso dei sintomi e dei segni, corrispondenti alla partecipazione delle zone focali del cervello”1,2. Ci sono due tipi di ictus: ischemico ed emorragico. Quando la disfunzione vascolare è causata da un aneurisma o un malfunzionamento arterovenoso, accompagnato da indebolimento con posteriore rottura di un’arteria, questo è definito ictus emorragico3 che, nella maggior parte dei casi conduce alla morte. Quando un trombo o un embolo ostacola il flusso di sangue, causando una temporanea privazione di ossigeno e glucosio per una regione del cervello, si chiama colpo ischemico4. Inadempimento di nutrire le cellule intorno alla zona interessata o core ischemico conduce ad un squilibrio omeostatico e metabolico, disfunzione energetica, morte neuronale e l’infiammazione5, che può indurre una disabilità permanente per pazienti6.
L’ictus ischemico è una ferita multifattoriale che coinvolge diversi tipi di cellule che reagiscono ed esercitano i loro effetti in diversi momenti. Molte interazioni creano un ambiente difficile per studiare il comportamento delle singole celle. Così, come noi a studiare il contributo di un tipo specifico delle cellule in un ambiente così complesso? Un modello accettato in vitro di ischemia consiste di esponendo le cellule a deprivazione di ossigeno e glucosio (OGD), per un certo periodo, seguito dal restauro delle cellule ad un ambiente normoxic. Questo sistema simula un colpo ischemico seguito da riperfusione di sangue. In questo metodo, le cellule o i tessuti sono esposti a una media glucosio-liberi in un ambiente che ha eliminato l’inceppo di ossigeno, utilizzando una camera ipossica specializzata. Il tempo di incubazione di OGD può variare da pochi minuti fino a 24 h, a seconda l’ipotesi che vuole essere testato. Studi hanno dimostrato che in base ai tempi di OGD e normoxic ambiente, fenotipi specifici del colpo (cioè, acuta o subcronica) può essere realizzato. Astrociti isolati, esposti a OGD con restauro posteriore a condizioni di normossia, è un modello di cellulare ben studiato per simulare la corsa in vitro7. Utilizzando OGD è possibile svelare i meccanismi molecolari indipendenti delle cellule isolate in un ambiente di colpo-come.
Come aumenta la nostra conoscenza della biologia di astrociti, è diventato evidente che sono cruciali per mantenere la sinapsi ed il sostenimento di riparazione, di sviluppo e plasticità neurale8. In condizioni normali, gli astrociti rilasciare e rispondere alle citochine, chemochine, fattori di crescita e gliotrasmettitori, mantenendo l’equilibrio metabolico e l’omeostasi nelle sinapsi5,9. In neuroinflammation acuta, come l’ictus ischemico, queste cellule possono diventano reattive, mostrare una lungo termine sovraespressione della proteina acida fibrillare gliale (GFAP) e mostrano ipertrofia nella loro morfologia5,10, 11 , 12. come si sviluppa l’infarto ischemico, l’omeostasi fornito da astrociti diventa affetto, per quanto riguarda l’assorbimento normale del glutammato, metabolismo energetico, scambio di molecole attive e antiossidante attività13.
Gli astrociti riattivati proliferano intorno al tessuto di infarto mentre leucociti migrano verso la zona leso14. Proliferazione astrocytic può essere misurata usando gli indicatori come antigene nucleare delle cellule di proliferazione (PCNA), Ki67 e bromodeossiuridina (BrdU)15. Questa risposta proliferativa viene generata in un modo dipendente dal tempo e aiuta a formare la cicatrice gliale, matrice di astrociti reattivi irreversibilmente lungo il parenchima del sito danneggiato dopo un infortunio9. Una delle funzioni iniziali di questa cicatrice è di limitare lo stravaso delle cellule immuni da questa zona. Tuttavia, gli studi hanno mostrato che la cicatrice diventa un impedimento fisico per gli assoni estendere, come essi rilasciare molecole inibendo la crescita assonale e creare una barriera fisica che impedisce che gli assoni che si estende intorno alla zona danneggiata16. Tuttavia, ci è prove scientifiche che dimostrano che dopo una lesione del midollo spinale, completamente prevenire la formazione di cicatrice gliale può alterare la rigenerazione di assoni17. Così, il contesto in cui viene misurata la risposta astrocytic specifica, deve essere considerato al momento il quadro della ferita ha studiato.
La metodologia presentata può essere applicata per studiare la funzione individualizzata dei astrocytes dopo privazione di ossigeno del glucosio e può essere modificato a seconda delle domande che lo sperimentatore vuole rispondere. Ad esempio, oltre il cambiamento morfologico e gli indicatori espressi in tempi diversi di OGD, i surnatanti dagli astrociti esposti a OGD possono essere analizzati ulteriormente per identificare fattori solubili rilasciati da queste cellule, o usato come un media condizionati per valutare la effetto in altre cellule del cervello. Questo approccio permette studi sulla reattività di astrociti che potrebbe portare alla delucidazione dei fattori che regolano e modulano la loro risposta in uno scenario di ictus ischemico.
Questo protocollo descrive l’isolamento degli astrociti da cortecce di ratto. In questo metodo, è fondamentale per ridurre la contaminazione con altri tipi cellulari come microglia, oligodendrociti e fibroblasti. Per ridurre il numero di microglia, si possono adottare diverse misure: cambiando la media, agitazione orbitale e trattamenti chimici. Una volta che la purezza di cultura è confermata dall’immunofluorescenza usando gli indicatori cellulari selettivi o per i contaminanti più prominenti di cella, gli esperiment…
The authors have nothing to disclose.
Gli autori vogliono ringraziare Paola López Pieraldi per l’assistenza tecnica. A.H.M è grato per le borse di studio 8G12MD007600 e U54-NS083924 supportato questa pubblicazione. Ringraziamo NIH-NIMHD-G12-MD007583 borsa di studio per il supporto della struttura. D.E.R.A. è grata per la borsa di studio fornito da NIHNIGMS-R25GM110513. Siamo grati per l’uso della zona di strumentazione comune e concedere l’aiuto del dottor Priscila Sanabria per l’uso della struttura Imaging ottico del programma RCMI da G12MD007583. Inoltre, vogliamo ringraziare Jose Padilla per il suo ruolo eccezionale in riprese e montaggio il protocollo visual.
Instruments for Surgery – Step 1 | |||
Operating scissor 5.5” | Roboz Company | RS-6812 | Tools used to decapitate the rats. |
Curved forceps 7” | Roboz Company | RS-5271 | Holds the skin of the rat while the skull is removed. |
Micro-dissecting scissors 4” | Roboz Company | RS-5882 | Cuts both the skin and skull of the rat. |
Micro-dissecting forceps 4” angled, fine sharp | Roboz Company | RS-5095 | Holds the skin of the rat while the skull is removed. |
Micro-dissecting forceps 4” slightly curved 0.8 | Roboz Company | RS-5135 | Tool used to separate cortices. |
Micro-dissecting tweezers | Roboz Company | RS-4972 | Peels brain meninges. |
Dissection microscope | Olympus | SZX16 | Important for removing the meninge from the cortices. |
DMEM Preparation – step 2 | |||
Dulbecco’s Modified Eagle’s Medium (DMEM) | GibCo. Company | 11995-065 | Supports the growth of cells. |
Sodium bicarbonate | Sigma-Aldrich Company | S7277 | Supplement for the cell culture media. |
Fetal bovine serum (FBS) | GibCo. Company | 10437-010 | Serum-supplement for the cell culture. |
Penicillin-Streptomycin | GibCo. Company | 15140-148 | Inhibits the growth of bacterias in the cell culture. |
Filter System 1L with 0.22um pore | Corning | 431098 | |
Astrocyte culture – step 3 | |||
Serological pipets 5mL | VWR | 89130-896 | To pipette DMEM to containers with cells. |
Serological pipets 10mL | VWR | 89130-898 | To pipette DMEM to containers with cells. |
Serological pipets 25mL | VWR | 89130-900 | To pipette DMEM to containers with cells. |
Centrifuge conical tube 15mL | Santa Cruz Biotechnology | sc-200250 | |
Safe-lock tube 1.5mL | Eppendorf | 022363204 | |
Barrier Tips 200 uL | Santa Cruz Biotechnology | sc-201725 | |
Barrier Tips 1 mL | Santa Cruz Biotechnology | sc-201727 | |
Biohazard Orange Bag 14 x 19" | VWR | 14220-048 | |
60mm petri dishes | Falcon | 351007 | |
Sterile gauze pads | Honeywell Safety | 89133-086 | |
Stomacher 80 Biomaster | Sewar Lab System | 030010019 | Triturate the brain tissue. |
Stomacher 80 Blender Sterile Bags | Sewar Lab System | BA6040 | Sterile bag for the stomacher cell homogenizer. |
Beaker 400mL | Pyrex | 1000 | |
Sterile cell dissociation sieve, mesh #60 | Sigma-Aldrich Company | S1020 | To obtain a uniform single cell suspension. |
Sterile cell dissociation sieve, mesh #100 | Sigma-Aldrich Company | S3895 | To obtain a uniform single cell suspension. |
Invert phase microscope | Nikon | Eclypse Ti-S | Verify cells for contamination or abnormal cell growth. |
75cm2 sterile flasks | Falcon | 353136 | |
Multi-well plate | Falcon | 353046 | |
Micro cover glasses (coverslips), 18mm, round | VWR | 48380-046 | |
Bright-Line hemacytometer | Sigma-Aldrich Company | Z359629 | |
Pasteur pipettes | Fisher Scientific | 13-678-20D | |
Ethyl alcohol | Sigma-Aldrich Company | E7023 | |
L-leucine methyl ester hydrochloride 98% (LME) | Sigma-Aldrich Company | L1002 | Promotes the elimination of microglia cells in the primary cortical astrocyte cultutre. |
Cytosine β-D-arabinofuranoside (Ara-C) | Sigma-Aldrich Company | C1768 | |
Poly-D-Lysine Hydrobromide, mol wt 70,000-150,000 | Sigma-Aldrich Company | P0899 | |
Trypsin/EDTA | GibCo. Company | 15400-054 | |
Trypan Blue | Sigma-Aldrich Company | T8154 | |
Phosphate buffer saline (PBS) tablets | Calbiochem | 524650 | |
Sterile Water | Sigma-Aldrich Company | W3500 | |
OGD Medium Preparation – step 5 | |||
Centrifuge conical tube 50 mL | VWR | 89039-658 | |
Dulbecco’s modified Eagle’s medium-free glucose | Sigma-Aldrich Company | D5030 | Supports the growth of cells. |
Sodium bicarbonate | Sigma-Aldrich Company | S7277 | Supplement for the cell culture media. |
Penicillin-Streptomycin | GibCo. Company | 15140-148 | Inhibits the growth of bacterias in the cell culture. |
200mM L-glutamine | GibCo. Company | 25030-081 | Amino acid that supplements the growth of cells. |
Phospahet buffer saline (PBS) tablets | Calbiochem | 524650 | |
Filter System 50mL with 0.22um pore | Corning | 430320 | |
Centrifuge conical tube 50 mL | VWR | 89039-658 | |
Single Flow Meter | Billups-Rothenberg | SMF3001 | Measure gas flow in oxygen purge. |
Hypoxia Incubator Chamber | StemCell | 27310 | Generates a hypoxic environment for the cell culture. |
Traceable Dissolved Oxygen Meter | VWR | 21800-022 | |
95% N2/ 5% CO2 Gas Mixture | Linde | Purges the environment of oxygen. | |
primary astrocyte immunofluorescence – step 6 | |||
Phosphate buffer saline (PBS) tablets | Calbiochem | 524650 | |
Formaline Solution Neutral Buffer 10% | Sigma-Aldrich | HT501128 | Solution used to fix cells. |
Methanol | Fisher | A4544 | Solution used to fix cells. |
Non-ionic surfactant (Triton X-100) | Sigma-Aldrich | T8787 | |
Fetal bovine serum (FBS) | GibCo. Company | 10437-010 | Serum-supplement for the cell culture. |
Anti-NeuN | Cell Signaling | 24307 | Detects mature neurons, serves to validate the astrocytic culture. |
Anti-PCNA | Cell Signaling | 2586 | Detects proliferating cells. |
Propidium Iodide (PI) | Sigma-Aldrich Company | P4170 | Apoptosis staining. |
Anti-Olig1 | Abcam | AB68105 | Detects mature oligodendrocytes. |
Anti-Iba1+ | Wako | 016-20001 | Detects microglial cells. |
Anti-GFAP Conjugated with Cy3 | Sigma-Aldrich Company | C9205 | Detects reactive astrocytes in the treated cells. |
Alexa Fluor 488 | Molecular Probe Life Technology | A1101 | Anti-Mouse Secondary Antibody |
Alexa Fluor 555 | Molecular Probe Life Technology | A21428 | Anti-Rabbit Secondary Antibody |
4’,6’-diamidino-2-phenylindole (DAPI) | Sigma-Aldrich Company | D9542 | Nuclear staining |
Confocal microscope | Olympus |