Summary

生产,结晶和结构测定<em>℃。难辨</em>通过Microseeding和锌SAD PPEP-1

Published: December 30, 2016
doi:

Summary

Proline-proline endopeptidase-1 (PPEP-1) is a secreted metalloprotease and promising drug-target from the human pathogen Clostridium difficile. Here we describe all methods necessary for the production and structure determination of this protein.

Abstract

New therapies are needed to treat Clostridium difficile infections that are a major threat to human health. The C. difficile metalloprotease PPEP-1 is a target for future development of inhibitors to decrease the virulence of the pathogen. To perform biophysical and structural characterization as well as inhibitor screening, large amounts of pure and active protein will be needed. We have developed a protocol for efficient production and purification of PPEP-1 by the use of E. coli as the expression host yielding sufficient amounts and purity of protein for crystallization and structure determination. Additionally, using microseeding, highly intergrown crystals of PPEP-1 can be grown to well-ordered crystals suitable for X-ray diffraction analysis. The methods could also be used to produce other recombinant proteins and to study the structures of other proteins producing intergrown crystals.

Introduction

难辨梭状芽孢杆菌是院内抗生素相关性腹泻感染1的主要原因之一。这种革兰氏阳性厌氧细菌通过其孢子形式通过粪 – 口途径传播。在过去的十年,新的'流行''或''超毒'株( BI / NAP1 / 027)造成的在北美和欧洲的2个感染和死亡率急剧增加。 艰难梭菌病机相关性(CDAD)是一种威胁生命结肠炎的高死亡率3。症状的范围从腹泻4至伪膜性肠炎5和经常致命的中毒性巨结肠6。

CDAD治疗是困难的,因为该毒株是耐多药,复发率高7。此刻疗法包括抗生素甲硝唑,fidaxomicin或万古霉素,或者在repetitively复发病例粪便菌群移植。新的治疗策略,迫切需要8。一些进展记录为治疗性单克隆抗体Bezlotoxumab,瞄准艰难梭菌毒素B 9,日前顺利通过III期临床试验,并申请了与FDA和EMA的批准。此外,新的抗生素被此刻测试在临床试验10的不同阶段。

要制定有效的治疗新的治疗靶点必须进行标识。最近发现的艰难梭菌蛋白酶脯氨酸脯氨酸内肽酶-1(PPEP-1; CD2830 / Zmp1; EC 3.4.24.89)是这样一种有前途的靶,如在敲除菌株缺乏PPEP-1的降低的C毒力。难辨体内 11。 PPEP-1是分泌金属蛋白酶12,13在它们的C-末端裂解2 梭状粘附13从而释放粘合杆菌IA从人体肠道上皮细胞。因此,参与维持艰难梭菌的固着和能动表型之间的平衡。为了开发选择性抑制剂对PPEP-1,了解它是如何认识它的底物的三维结构的深入了解是必不可少的。我们已经解决PPEP-1单独和复合物的第一晶体结构的衬底的肽14。 PPEP-1是第一个已知的蛋白酶的两个脯氨酸残基的15之间选择性裂解肽键。其结合在双扭结方式在基片和通过位于在S环覆盖蛋白酶活性位点14个残基的延伸脂族-芳族的网络稳定它。此底物结合模式是唯一的PPEP-1和人蛋白酶迄今未找到。这使得它有前途的药物靶标,以及脱靶酶抑制剂不太可能的影响。

为了发展和屏幕选择PPEP-1 INHibitors在将来需要大量的纯净,单分散PPEP-1蛋白。此外,为了确定与PPEP-1第一抑制剂,共晶体结构的结合将要确定的模式。在我们的手中PPEP-1不断推出共生晶体。因此,我们已开发出一种优化过程,以产生PPEP-1的单衍射质量的晶体。在这个协议中,我们详细描述了PPEP-1 14的生产,纯化,结晶和结构的解决方案。我们在缺乏分泌信号序列,亲和层析和大小排阻色谱法除去纯化标记的一个PPEP-1变体的大肠杆菌用胞内表达,随后通过锌单波长异常色散microseeding 16成优化屏幕和结构确定(锌- SAD)17。这个协议可以适于生产和结构确定的其他蛋白质( 例如</ em>的金属蛋白酶),特别是用于生产共生晶体蛋白质。根据要求,构建体的质粒DNA(质粒pET28a-NHIS-rPPEP-1)和衍射数据可以提供用于教育目的。

Protocol

1.克隆和构造设计克隆艰难梭菌 PPEP-1的密码子优化的序列(用于大肠杆菌 ),而不该信号肽[氨基酸27-220,命名以下重组PPEP-1(rPPEP-1)11]成使用的Nde I的的pET28a载体和Xho I限制性位点( 图1)与在3'-端(所得载体pET28a-NHIS-rPPEP-1)一个终止密码子。这将产生一个N-末端6xHis标签蛋白(NHIS-rPPEP-1)与凝血酶切割位点允许在纯化过程中除去标记( …

Representative Results

rPPEP-1过表达的几个大肠杆菌菌株,在大肠杆菌 BL21(DE3)中星( 图1C)的最高产率。第一NiNTA亲和层析步骤之后的6xHis标签可以从大多数蛋白质的成功切除和在第二NiNTA步骤未消化的蛋白质可以从凝血酶消化蛋白质( 图1D)完全分离。上的S200六百分之十六柱未标记rPPEP-1迁移与偶尔面向最有可能对应于二聚体物种( 图2A)?…

Discussion

X射线晶体学仍然是确定的蛋白质28三维近原子分辨率的结构最快,最准确的方法。但是,它需要秩序井然单晶的生长。这些往往难以得到与结晶状态是人为的。然而,通过X射线晶体与用其他方法,测定确定蛋白质结构的比较特别NMR,通常显示出非常良好的一致性。在PPEP-1的情况下,一个NMR结构最近发表29示出良好的协议与我们的晶体结构14,包括S-环路的流动性。

<p cla…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢员工同步数据采集期间在瑞士光源,保罗谢勒研究所,菲利根,瑞士支持束线X06DA。我们感谢莫妮卡Gompert优秀的技术支持。该项目由科隆大学,并授予由德国研究委员会INST 216 / 682-1 FUGG支持。从国际研究生院在发展健康和疾病给CP一个博士研究生奖学金是公认的。导致这些结果的研究号赠款协议283570(BioStruct-X)下收到的资金来自欧盟第七框架计划(FP7 / 2007-2013)。

Materials

Genes / Vectors / cell strains
pET28a vector Merck-Millipore 69864 Thrombin cleavable N-terminal His-tag
E. coli strain BL21 (DE3) Star ThermoFisher Scientific C601003 RNase H deficient
Codon-optimized gene (for E. coli) of PPEP-1 (CD630_28300) Geneart (Thermo Fisher Scientific) custom amino acids 27-220
Name Company Catalog Number Comments
Chemicals
Yeast extract any
Tryptone any
Antifoam B Sigma-Aldrich A5757 aqueous-silicone emulsion
Agar any
Kanamycin any
IPTG AppliChem A1008
Tris-HCl AppliChem A1087 Buffer grade
NaCl any Buffer grade
DNaseI AppliChem A3778
Imidazole AppliChem A1073 Buffer grade
Thrombin Sigma-Aldrich T4648
Ammonium phosphate dibasic Sigma-Aldrich 215996
Glycerol 100% any purest grade
Sucrose Sigma-Aldrich 84097
Liquid nitrogen any for storage and cryocooling of crystals
Name Company Catalog Number Comments
Equipment (general)
Shaking incubator any providing temperatures of 20 °C – 37 °C
Glassware any baffled Erlenmeyer flasks (50 ml – 2.8L)
Centrifuge for large culture volumes any centrifuge for processing volumes up to 12 L
Sonicator Vibra-Cell VCX500 Sonics SO-VCX500 or any other sonicator / cell disruptor
Ultracentrifuge any centrifuge providing speeds up to 150.000 x g
NiNTA Superflow resin Qiagen
Empty Glass Econo-Column Bio-Rad 7371007 or any other empty glass or plastic column
Size exclusion chromatography column HiLoad Superdex 200 16/600 GE Healthcare 28989335
Chromatography system Äkta Purifier GE Healthcare 28406264 or any other chromatography system
Dialysis tubing Spectra/Por 3 Spectrum Labs 132724
Dialysis tubing closures Spectrum Labs 132738
Ultrafiltration units (concentrators) 10.000 NWCO any
UV-Vis spectrophotometer any
Name Company Catalog Number Comments
Equipment (crystallography)
Low volume pipette 0.1-10 µl any
Positive displacement pipette Microman M10 Gilson F148501
Crystallization robot any
96-well crystallization plates TTP IQ with three protein wells TTP 4150-05810 or any other 96-well crystallization plate 
24-well CombiClover Junior Plate Jena Bioscience EB-CJR
Crystal Clear Sealing Tape Hampton Research HR3-511
Siliconized Glass Cover Slides Hampton Research HR3-225
Commercial crystallization screens: SaltRx, Index, PEG/Ion, Crystal Hampton Research diverse
Commercial crystallization screens: Wizard, PACT++, JCSG++ Jena Bioscience diverse
JBS Beads-for-Seeds Jena Bioscience CO-501
CrystalCap SPINE HT (nylon loops) Hampton Research diverse loop sizes 0.025 mm – 0.5 mm
CrystalCap Vial Hampton Research HR4-904
Cryogenic Foam Dewar 800 ml Hampton Research HR4-673
Cryogenic Foam Dewar 2L Hampton Research HR4-675
Vial Clamp, Straight Hampton Research HR4-670
CrystalWand Magnetic, Straight Hampton Research HR4-729
CryoCane 6 Vial Holder Hampton Research HR4-711
CryoSleeve Hampton Research HR4-708
CryoCane Color Coder – White Hampton Research HR4-713
Scalpel any
Straight microforcep any for manipulation of sealing tape. etc.
Acupuncture needle any e.g. from a pharmacy
Stereo microscope any for inspection of crystallization plates and crystal mounting, magnification up to 160X

References

  1. Bouza, E. Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect. 18 (Suppl 6), 5-12 (2012).
  2. O’Connor, J. R., Johnson, S., Gerding, D. N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 136 (6), 1913-1924 (2009).
  3. Mitchell, B. G., Gardner, A. Mortality and Clostridium difficile infection: a review. Antimicrob Resist Infect Control. 1 (1), (2012).
  4. George, W. L., Sutter, V. L., Finegold, S. M. Antimicrobial agent-induced diarrhea–a bacterial disease. J Infect Dis. 136 (6), 822-828 (1977).
  5. George, R. H., et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J. 1 (6114), 695 (1978).
  6. Bartlett, J. G. Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med. 145 (10), 758-764 (2006).
  7. Kelly, C. P., LaMont, J. T. Clostridium difficile–more difficult than ever. N Engl J Med. 359 (18), 1932-1940 (2008).
  8. Ünal, C. M., Steinert, M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets. 20 (3), 269-285 (2016).
  9. Kelly, C. P., et al. The Monoclonal Antibody, Bezlotoxumab Targeting C. difficile Toxin B Shows Efficacy in Preventing Recurrent C. difficile Infection (CDI) in Patients at High Risk of Recurrence or of CDI-Related Adverse Outcomes. Gastroenterology. 150 (4), S122 (2016).
  10. Tsutsumi, L. S., Owusu, Y. B., Hurdle, J. G., Sun, D. Progress in the discovery of treatments for C. difficile infection: A clinical and medicinal chemistry review. Curr Top Med Chem. 14 (1), 152-175 (2014).
  11. Hensbergen, P. J., et al. Clostridium difficile secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831. FEBS Lett. 589 (24), 3952-3958 (2015).
  12. Cafardi, V., et al. Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One. 8 (11), e81306 (2013).
  13. Hensbergen, P. J., et al. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteomics. 13 (5), 1231-1244 (2014).
  14. Schacherl, M., Pichlo, C., Neundorf, I., Baumann, U. Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. Structure. 23 (9), 1632-1642 (2015).
  15. Rawlings, N. D., Waller, M., Barrett, A. J., Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42 (Release 10.0), D503-D509 (2014).
  16. Bergfors, T. Seeds to crystals. J Struct Biol. 142 (1), 66-76 (2003).
  17. Dauter, Z., Dauter, M., Dodson, E. Jolly SAD. Acta Crystallogr D Biol Crystallogr. 58 (Pt 3), 494-506 (2002).
  18. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259), 680-685 (1970).
  19. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254 (1976).
  20. Kabsch, W. XDS. Acta Crystallogr D Biol Crystallogr. 66 (Pt 2), 125-132 (2010).
  21. Adams, P. D., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 66, 213-221 (2010).
  22. Emsley, P., Lohkamp, B., Scott, W. G., Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 66 (Pt 4), 486-501 (2010).
  23. . . The PyMOL Molecular Graphics System. , (2002).
  24. Pettersen, E. F., et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 25 (13), 1605-1612 (2004).
  25. Wang, B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90-112 (1985).
  26. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., Read, R. J. Phaser crystallographic software. J Appl Crystallogr. 40 (Pt 4), 658-674 (2007).
  27. Zwart, P. H., et al. Automated structure solution with the PHENIX suite. Methods Mol Biol. 426, 419-435 (2008).
  28. Zheng, H., Handing, K. B., Zimmerman, M. D., Shabalin, I. G., Almo, S. C., Minor, W. X-ray crystallography over the past decade for novel drug discovery – where are we heading next?. Expert Opin Drug Discov. 10 (9), 975-989 (2015).
  29. Rubino, J. T., et al. Structural characterization of zinc-bound Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile. J Biol Inorg Chem. 21 (2), 185-196 (2016).
  30. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., Delucas, L. J. His-tag impact on structure. Acta Crystallogr D Biol Crystallogr. 63 (Pt 3), 295-301 (2007).
  31. Gasteiger, E., Walker, J. M., et al. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. , 571-607 (2005).
  32. Dummler, A., Lawrence, A. M., de Marco, A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact. 4, 34 (2005).
  33. Stura, E. A., Wilson, I. A. Applications of the streak seeding technique in protein crystallization. J Crys Growth. 110 (1), 270-282 (1991).
check_url/kr/55022?article_type=t

Play Video

Cite This Article
Pichlo, C., Montada, A. A., Schacherl, M., Baumann, U. Production, Crystallization and Structure Determination of C. difficile PPEP-1 via Microseeding and Zinc-SAD. J. Vis. Exp. (118), e55022, doi:10.3791/55022 (2016).

View Video