Summary

昆虫控制的机器人:移动机器人平台来评估昆虫的气味跟踪能力

Published: December 19, 2016
doi:

Summary

本地化气味源的能力是必要的昆虫存活和预计适用于人工气味跟踪。昆虫控制机器人由一个实际silkmoth驱动,使我们可以通过一个机器人平台,以评估昆虫气味跟踪能力。

Abstract

Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This “bottom-up” approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this “hybrid” approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

Introduction

Autonomous robots capable of finding an odor source can be important for the safety and security of society. They can be used for the detection of disaster victims, of drugs or explosive materials at an airport, and of hazardous material spills or leaks in the environment. At present, we rely entirely on well-trained animals (e.g., dogs) for these tasks, and robotic odor source localization has been strongly expected to relieve the workload of these animals. Finding an odor source is a challenging task for robots because odorants are distributed intermittently in an atmosphere1; therefore, continuous sampling of the odor concentration gradient is not always possible. Thus, a search strategy using intermittent odor cues is necessary for the achievement of robotic odor source localization2-4.

Odor source localization is essential for organism survival and includes tasks such as finding food, mating partners, and sites for oviposition. To overcome the difficulty in tracking patchy distributed odorants, organisms have evolved various behavioral strategies consisting of two fundamental behaviors: moving upstream during odor reception and cross-stream during cessation of odor reception5,6. These reactive strategies have been well-documented in insects and further combined with other modalities, such as wind direction and vision5-8. The insect behavioral models have also been useful examples for robotics3,9-11, in which behavioral algorithms or neural circuit models are implemented into mobile robots for the evaluation of odor source localization abilities10,12-15. From biomimetic perspectives, this “bottom-up” approach is certainly a fundamental way to develop biomimetic robots. However, the bottom-up approach is not a shortcut to obtaining a useful search strategy, because biological analyses are still ongoing, and the modeling of the sensory-motor systems behind insect behaviors has not been completed. Therefore, it is still unknown how such a biological system actually works as a controller of a robotic platform.

In this article, we demonstrate the protocol of a straightforward “top-down” approach to develop an odor-tracking mobile robot controlled by a biological system16,17. The robot is controlled by a real insect and can be regarded as a prototype of future insect-mimetic robots. In the robot’s cockpit, a tethered adult male silkmoth (Bombyx mori) walked on an air-supported ball in response to the female sex pheromone, which was delivered to each antenna through air suction tubes. The ball rotations caused by the walking of the onboard moth were measured by an optical sensor and were translated into the movement of the two-wheeled robot. The advantage of this “hybrid” approach is that experimenters can investigate how the insect sensory-motor system works on the robotic platform where a pilot insect is in a closed loop between the robot and a real odor circumstance. The manipulation of the robotic hardware alters the closed loop; therefore, the insect-controlled robot is a useful platform for both engineers and biologists. For engineering, the robot represents the first steps of applying a biological model to meet the requirements for robotic tasks. For biology, the robot is an experimental platform for studying sensory-motor control under a closed loop.

Protocol

1.实验动物准备一个塑料盒,以保持公silkmoths的蛹( 桑蚕 ),直到他们的羽化。在底部放纸巾和纸板件周围的框( 图1A)的内壁。 注:纸板的作品是必要的成蛾,同时羽化( 图1A)在扩大自己的翅膀举行。 在框中放入雄silkmoth( 家蚕铁道部 I)蛹,并让他们在一个孵化器,直到羽化16小时下:8小时光照:黑暗周期为25℃。 <b…

Representative Results

我们在座的一个气味源的成功国产化所需的昆虫控制机器人的基本特征。机器人和silkmoths,气味递送系统的有效性,并准确双边嗅觉和视觉输入的重要性之间的比较被检查。 气味跟踪行为自如行走蛾和昆虫控制机器人之间的比较示于图10A和B.在相同气味的情况下,无论是行走蛾和机器人拿下100%的成?…

Discussion

用于通过silkmoth机器人的成功控制的最重要的点是让蛾行走顺畅的空气支撑球和稳定地测量球的旋转。因此,圈养的silkmoth并在适当的位置将其安装在球在此协议中的关键步骤。蛾到附件或球上的蛾不适当定位不当粘附将导致在其上不自然的压力,这扰乱它的正常行走行为和/或引起该光学传感器的故障来测量球的旋转。粗糙化的聚苯乙烯球也很重要,以防止蛾打滑。系留蛾的响应的移动来刺激气?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Shigeru Matsuyama for providing purified bombykol. This work was supported by the Japan Society for the Promotion of Science KAKENHI (grant numbers 22700197 and 24650090) and the Human Frontier Science Program (HFSP).

Materials

Male adult silkmoth
 (Bombyx mori)
Rear from eggs, or purchase as pupae.
Incubator Panasonic MIR-254 Store pupae or adult silkmoths at a constant temperature, 238 L.
Plastic box Sunplatec O-3 Store pupae or adult silkmoths, 299 × 224 × 62 mm L × W × H.
Copper wire 2-mm diameter for the attachment. Any rigid bar can be used as an alternative for making the attachment to tether a silkmoth. 
Plastic sheet Kokuyo VF-1420N Sold as overhead projector film with thickness of 0.1 mm. Use at the tip of the attachment.
Forceps As one 5SA Remove scales on the thorax.
Adhesive Konishi G17 Bond a silkmoth to the attachment.
Insect-controlled robot Custom Bearing an air-supported treadmill, an optical sensor, custom-built AVR-based microcontroller boards, and two DC brushless motors. It is powered by 8 × AA and 3 × 006P batteries.
Microcontroller Atmel ATMEGA8 A component of the insect-controlled robot.
DC blower Nidec A34342-55 A component of the insect-controlled robot for floating a ball in an air-supported treadmill. 
DC fan Minebea 1606KL-04W-B50 A component of the insect-controlled robot for suctioning air containing an odor.
Optical mouse sensor Agilent technologies HDNS-2000 A component of the insect-controlled robot, obtained from an optical mouse (M-GUWSRSV, Elecom, Japan).
Brushless motor Maxon EC-45 A component of the insect-controlled robot for driving a wheel.
White polystyrene ball A component of the insect-controlled robot. Diameter 50 mm, mass approximately 2 g.
Bombykol:
 (E,Z)-10,12-hexadecadien-1-ol
Shin-Etsu chemical Custom synthesis.
n-hexane Wako 085-00416 Solvent for bombykol.
Wind tunnel Custom Pulling-air type, sized 1800 × 900 × 300 mm L × W × H.
BioSignal program Custom A program to establish serial communication between the insect-controlled robot and a PC via Bluetooth. Used for sending commands to start/stop the robot or configuring its motor properties. 
Camcorder Sony HDR-XR520V Capture robot movements.

References

  1. Murlis, J., Jones, C. D. Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol. 6, 71-86 (1981).
  2. Vergassola, M., Villermaux, E., Shraiman, B. I. ‘Infotaxis’ as a strategy for searching without gradients. Nature. 445, 406-409 (2007).
  3. Kowadlo, G., Russell, R. A. Robot Odor Localization: A Taxonomy and Survey. The International Journal of Robotics Research. 27, 869-894 (2008).
  4. Hernandez Bennetts, V., Lilienthal, A. J., Neumann, P. P., Trincavelli, M. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go. Frontiers in neuroengineering. 4, 20 (2011).
  5. Vickers, N. J. Mechanisms of animal navigation in odor plumes. Biol Bull. 198, 203-212 (2000).
  6. Willis, M. A. Chemical plume tracking behavior in animals and mobile robots. Navigation. 55, 127-135 (2008).
  7. Carde, R. T., Willis, M. A. Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol. 34, 854-866 (2008).
  8. Frye, M. A. Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol. 20, 347-352 (2010).
  9. Russell, R. A. Survey of robotic applications for odor-sensing technology. The International Journal of Robotics Research. 20, 144-162 (2001).
  10. Russell, R. A., Bab-Hadiashar, A., Shepherd, R. L., Wallace, G. G. A comparison of reactive robot chemotaxis algorithms. Robot Auton Syst. 45, 83-97 (2003).
  11. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J. Plume-tracking robots: a new application of chemical sensors. Biol Bull. 200, 222-226 (2001).
  12. Webb, B., Harrison, R. R., Willis, M. A. Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Struct Dev. 33, 301-329 (2004).
  13. Kanzaki, R. How does a microbrain generate adaptive behavior. Int Congr Ser. 1301, 7-14 (2007).
  14. Kanzaki, R., Ando, N., Sakurai, T., Kazawa, T. Understanding and reconstruction of the mobiligence of insects employing multiscale biological approaches and robotics. Adv Robotics. 22, 1605-1628 (2008).
  15. Ravel, N., et al. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy. Plos One. 8, 61220 (2013).
  16. Emoto, S., Ando, N., Takahashi, H., Kanzaki, R. Insect-controlled robot-evaluation of adaptation ability. J Robot Mechatronics. 19, 436-443 (2007).
  17. Ando, N., Emoto, S., Kanzaki, R. Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim. 8, 016008 (2013).
  18. Gatellier, L., Nagao, T., Kanzaki, R. Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol. 207, 2487-2496 (2004).
  19. Ando, N., Kanzaki, R. A simple behaviour provides accuracy and flexibility in odour plume tracking – the robotic control of sensory-motor coupling in silkmoths. J. Exp. Biol. 218, 3845-3854 (2015).
  20. Kaissling, K. E., Beidler, L. M. Insect olfaction. Handbook of Sensory Physiology Vol. 4. , 351-431 (1971).
  21. Kanzaki, R., Sugi, N., Shibuya, T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci. 9, 515-527 (1992).
  22. Takasaki, T., Namiki, S., Kanzaki, R. Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol. A. 198, 295-307 (2012).
  23. Kanzaki, R. Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth. J Comp Physiol A. 182, 267-276 (1998).
  24. Pansopha, P., Ando, N., Kanzaki, R. Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol. 217, 1811-1820 (2014).
  25. Loudon, C., Koehl, M. A. R. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae. J. Exp. Biol. 203, 2977-2990 (2000).
  26. Lebedev, M. A., Nicolelis, M. A. L. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536-546 (2006).
  27. Ejaz, N., Peterson, K. D., Krapp, H. G. An experimental platform to study the closed-loop performance of brain-machine interfaces. Journal of visualized experiments : JoVE. , (2011).
  28. Minegishi, R., Takashima, A., Kurabayashi, D., Kanzaki, R. Construction of a brain-machine hybrid system to evaluate adaptability of an insect. Robot Auton Syst. 60, 692-699 (2012).
  29. Martinez, D., Arhidi, L., Demondion, E., Masson, J. B., Lucas, P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. Journal of visualized experiments : JoVE. , e51704 (2014).
  30. Ortiz, L. I. . A mobile electrophysiology board for autonomous biorobotics. , (2006).
  31. Bohil, C. J., Alicea, B., Biocca, F. A. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci. 12, 752-762 (2011).
  32. Dombeck, D. A., Reiser, M. B. Real neuroscience in virtual worlds. Curr Opin Neurobiol. 22, 3-10 (2012).
  33. Roth, E., Sponberg, S., Cowan, N. J. A comparative approach to closed-loop computation. Curr Opin Neurobiol. 25, 54-62 (2014).
  34. Leinweber, M., et al. Two-photon calcium imaging in mice navigating a virtual reality environment. Journal of visualized experiments : JoVE. , e50885 (2014).
  35. Takalo, J., et al. A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments. Sci Rep. 2, 324 (2012).
  36. Bahl, A., Ammer, G., Schilling, T., Borst, A. Object tracking in motion-blind flies. Nat Neurosci. 16, 730-738 (2013).
  37. Bellmann, D., et al. Optogenetically Induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci. 4, 27 (2010).
  38. Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L., Wilson, R. I. Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature. 493, 424-428 (2013).
  39. Tabuchi, M., et al. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 110, 15455-15460 (2013).
  40. Schulze, A., et al. Dynamical feature extraction at the sensory periphery guides chemotaxis. Elife. 4, 06694 (2015).
  41. Duistermars, B. J., Chow, D. M., Frye, M. A. Flies require bilateral sensory input to track odor gradients in flight. Curr Biol. 19, 1301-1307 (2009).
  42. Gomez-Marin, A., Duistermars, B. J., Frye, M. A., Louis, M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci. 4, 6 (2010).
  43. Sakurai, T., et al. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. Plos Genet. 7, (2011).
  44. Tripathy, S. J., et al. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front Cell Neurosci. 4, 1 (2010).
  45. Daly, K. C., Kalwar, F., Hatfield, M., Staudacher, E., Bradley, S. P. Odor detection in Manduca sexta is optimized when odor stimuli are pulsed at a frequency matching the wing beat during flight. Plos One. 8, 81863 (2013).
  46. Szyszka, P., Gerkin, R. C., Galizia, C. G., Smith, B. H. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc Natl Acad Sci USA. 111, 16925-16930 (2014).
  47. Harvey, D., Lu, T. F., Keller, M. Odor sensor requirements for an insect inspired plume tracking mobile robot. Proceedings of’The 2006 IEEE International Conference on Robotics and Biomimetics. , 130-135 (2006).

Play Video

Cite This Article
Ando, N., Emoto, S., Kanzaki, R. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect. J. Vis. Exp. (118), e54802, doi:10.3791/54802 (2016).

View Video