Summary

צמד תיקון הקלטה של ​​תאי הקרנות amacrine בתוך הכנת שטוח הר Deafferentated רשתית העכבר

Published: October 13, 2016
doi:

Summary

פרוטוקול זה מדגים כיצד לבצע הקלטת תיקון מהדק כל תא על נוירונים ברשתית מן הכנת שטוח הר.

Abstract

הרשתית היונקת היא רקמה שכבתית מורכבת סוגי נוירונים מרובים. כדי להבין כיצד חזותי אותות מעובדים בתוך הרשת הסינפטי המורכבת שלה, הקלטות אלקטרו משמשות לעתים קרובות כדי ללמוד קשרים בין נוירונים בודדים. יש לנו אופטימיזציה הכנה שטוח הר עבור צמד תיקון הקלטה של ​​נוירונים מסומנים גנטי בשני GCL (שכבת תא גנגליון) ו INL (שכבת גרעין פנימית) של רשתית עכבר. נוירונים INL הקלטה שטוח mounts הוא מועדף על פרוסות בגלל קשרים אנכיים וצידית נשמרים בתצורה לשעבר, המאפשר מעגלי רשתית עם רכיבים לרוחב גדולים כדי להיחקר. השתמשנו בהליך זה כדי להשוות תשובות של נוירונים-שותפה מראים רשתית כגון תאי amacrine מספרים כולינרגית (צקים).

Introduction

As an easily accessible part of the central nervous system, the retina has for decades been a useful model in neuroscience studies. Genetic marking of neurons has allowed detailed characterization of synaptic connections in the retina. With many methodologies available to examine function and morphology of retinal neurons, the patch clamp recording technique has been instrumental in our current understanding of vertically transmitted signals in the retina. These signals are originated from photon absorption in photoreceptors and sent to brain visual centers through spiking of retinal ganglion cells (RGCs). Despite a large body of knowledge accumulated thus far, neural diversity in vascularized mammalian retina remains unsolved and obstructs the full appreciation of retinal circuits that subserve normal vision. This is in part because most recordings were performed on retinal slices to trade lateral circuit integrity for access to more proximal retinal neurons1-3. To gain a comprehensive picture on how retina computes visual signals, it is thus desirable to record neurons in flat-mounts wherein lateral connections, large and small, may be better preserved.

When synaptic transmission from photoreceptors to bipolar cells is interrupted due to a defective metabotropic glutamate receptor 6 (mGluR6) signaling pathway in depolarizing bipolar cells4-6 or simply as the result of photoreceptor loss in degenerated retinas7-10, many RGCs exhibit oscillatory activities. These oscillations originate from multiple sources, however the one involving gap junction coupling between AII amacrine cells (AII-ACs) and depolarizing cone bipolar cells (DCBCs) has received the most attention and hence is best understood1,7,11. We have found another source, which persists under pharmacological blockade of the aforementioned AII-AC/DCBC network and drives oscillation of OFF-type SACs in RhoΔCTA and Nob mice with deafferentated retinas7,8,12. Here we detail our protocol of preparing retinal flat-mounts for INL neuron recording. This approach uses commercial mouse lines (Jax stock no. 006410 and 007905) to mark cholinergic retinal neurons by fluorescent protein (tdTomato) expression that is identifiable under a fluorescent microscope equipped with contrast enhancing optics. Some experimental results acquired through this approach have been previously reported4,5,7,13.

Protocol

אישור אתי – נהלים הקשורים בנושאי בעלי חיים בוצעו בהתאם לכללים וההתקנות של ה- National Institutes of הנחיות בריאות חיות מחקר, כפי שאושר על ידי הטיפול בבעלי החיים המוסדי ועדת השימוש של ביילור לרפואה. חיצוני 1. ופתרונות פנימיים <li s…

Representative Results

קלטות נציג וחוץ צקי OFF-סוג של רשתית עכבר deafferentated מוצגות באיור 1. תאים כולינרגית בשני GCL ו INL ניתן לזהות באופן אמין על ידי קרינת tdTomato וממוקדת להקלטת מהדק תיקון כל תא תחת DIC (איור 1 א) לחשוף תנודה של הפוטנציאלים הממברנה שלהם (עקבות למעלה) ?…

Discussion

מעבדות רבות הקליטו מתא עצב GCL בדירת הר הכנה 15-18, אך ההליכים שלנו מאפשרים הקלטה מתא עצב INL. הרינו להדגיש מספר צעדים חיוניים להקלטות שגרה מוצלחות.

רעננויות השטיחות של הרשתית חשובות חודר אותו עם טפטפת הקלטה. בהקשר זה, את הקובץ המ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Joung Jang and Xin Guan for technical assistance. We thank Dr. Rory McQuiston of Virginia Commonwealth University for setting up our first patch clamp rig and advices on experimental procedures. We thank Dr. Samuel Wu for suggestions on voltage clamp recording. The work is supported by NIH grants EY013811, EY022228 and a vision core grant EY002520. C-KC is the Alice R. McPherson Retina Research Foundation Endowed Chair at the Baylor College of Medicine.

Materials

Fixed-stage fluorescent microscope with DIC Olympus BX51-WI
Micromanipulators Sutter MP-225
Patch clamp amplifier A-M System AM2400
AD converter National Instrument NI-USB-6221
Heater controller Warner Instrument TC-324B
Inline heater Warner Instrument SC-20
Peristaltic pump Rainin Dynamax
pipette puller Sutter Instrument P-1000
Glass tube with filament King Precision Glass Customized
Stimulator A.M.P.I. Master-8
Biocytin Sigma B4261
NaCl Sigma S6191
KCl Sigma P5405
NaHCO3 Fisher BP328-1
Na2HPO4 Sigma S0876
NaH2PO4 Sigma S5011
CaCl2 Sigma C5670
MgSO4 Sigma M1880
D-glucose Sigma G6152
K-gluconate Sigma G4500
ATP-Mg Sigma A9187
Li-GTP Sigma G5884
EGTA Sigma E0396
HEPES Sigma H4034
KOH Sigma P5958
Cs-methanesulfonate Sigma C1426
CsOH Sigma 232041
Syringer filter Nalgene 171
1 ml syring Rainin 17013002
10 ul pipette tip Genesee Scientific 24-130RL
Streptavidin-488 ThermoFisher S-11223
10X PBS Lonza 17-517Q

References

  1. Choi, H., et al. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol. 112 (6), 1491-1504 (2014).
  2. Gregg, R. G., et al. Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol. 98 (5), 3023-3033 (2007).
  3. Hellmer, C. B., Ichinose, T. Recording light-evoked postsynaptic responses in neurons in dark-adapted, mouse retinal slice preparations using patch clamp techniques. J Vis Exp. (96), (2015).
  4. Tu, H. Y., Bang, A., McQuiston, A. R., Chiao, C. C., Chen, C. K. Increased dendritic branching in direction selective retinal ganglion cells in nob1 mice. Invest Ophthalmol Vis Sci. 55 (13), (2014).
  5. Tu, H. Y., Chen, Y. J., Chiao, C. C., McQuiston, A. R., Chen, C. K. J. Rhythmic membrane potential fluctuations of cholinergic amacrine cells in mice lacking ERG b-waves. Invest Ophthalmol Vis Sci. 56 (7), (2015).
  6. Demas, J., et al. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron. 50 (2), 247-259 (2006).
  7. Tu, H. Y., Chen, Y. J., McQuiston, A. R., Chiao, C. C., Chen, C. K. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model. Front Cell Neurosci. 9, 513 (2015).
  8. Borowska, J., Trenholm, S., Awatramani, G. B. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci. 31 (13), 5000-5012 (2011).
  9. Margolis, D. J., Detwiler, P. B. Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol. , (2011).
  10. Stasheff, S. F. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol. 99 (3), 1408-1421 (2008).
  11. Trenholm, S., Awatramani, G. B. Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci. 9, 277 (2015).
  12. Trenholm, S., et al. Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels. J Physiol. 590 (Pt 10), 2501-2517 (2012).
  13. Chen, C. K. J., et al. Cell-autonomous changes in displaced cholinergic amacrine cells lacking Gbeta5. Invest Ophthalmol Vis Sci. 56 (7), (2015).
  14. O’Brien, B. J., Isayama, T., Richardson, R., Berson, D. M. Intrinsic physiological properties of cat retinal ganglion cells. J Physiol. 538 (Pt 3), 787-802 (2002).
  15. Lee, S., et al. An Unconventional Glutamatergic Circuit in the Retina Formed by vGluT3 Amacrine Cells. Neuron. 84 (4), 708-715 (2014).
  16. Hoggarth, A., et al. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron. 86 (1), 276-291 (2015).
  17. Margolis, D. J., Gartland, A. J., Singer, J. H., Detwiler, P. B. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One. 9 (1), e86253 (2014).
  18. Schmidt, T. M., Kofuji, P. An isolated retinal preparation to record light response from genetically labeled retinal ganglion cells. J Vis Exp. (47), (2011).
  19. Ivanova, E., Yee, C. W., Sagdullaev, B. T. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front Cell Neurosci. 9, 390 (2015).
  20. Enoki, R., Koizumi, A. A method of horizontally sliced preparation of the retina. Methods Mol Biol. 935, 201-205 (2013).
  21. Akrouh, A., Kerschensteiner, D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol. 114 (4), 2431-2438 (2015).
  22. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 5 (7), 1347-1352 (2010).

Play Video

Cite This Article
Tu, H., Hsu, C., Chen, Y., Chen, C. Patch Clamp Recording of Starburst Amacrine Cells in a Flat-mount Preparation of Deafferentated Mouse Retina. J. Vis. Exp. (116), e54608, doi:10.3791/54608 (2016).

View Video