Summary

מגן היעילות ריאתי החיסונית בתגובה תת עורי ואת אפי BCG מינהל עכברים

Published: September 19, 2016
doi:

Summary

We herein detail the methodology followed to compare protective efficacy and lung immune response induced by intranasal and subcutaneous immunization with BCG in mouse model. Our results show the benefits of pulmonary vaccination and suggest a role for IL17-mediated response in vaccine-induced protection.

Abstract

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.

Introduction

שחפת (TB) היא אחת המחלות הזיהומיות המובילים בגרימת מותם מזוהה יותר HIV בעולם בשילוב עם העלייה הגואה של זנים עמידים multidrug גורם שחפת בעיה בריאותית עולמית מדאיגה 1. כלי אבחון חדשים, תרופות יעילות יותר ופחות רעילות, וחיסוני TB בטוחים ויעילים חדשים הם צורך דחוף, במיוחד במדינות המתפתחות.

לחיות Bacille Calmette-גרן מוחלשים (BCG) היא כיום חיסון מורשה רק נגד שחפת, אשר כבר מנוהל intradermally בלידה מאז 1970 ברחבי העולם. BCG נחשב יעיל במניעת צורות חמורות של המחלה (דלקת קרום המוח שחפת miliary) בילדים, אך הראה יעילות עולה בקנה אחד נגד שחפת ריאתית אחראית של העברת מחלות 2.

חיסון ריאתי, אשר מחק מסלול טבעי של זיהום שחפת, מייצג גישה אטרקטיבית עבור תחול תגובה מקומי חיסון של פונדקאיים. בהקשר זה, יצירות פרה-קליניים שונים במודלים של בעלי חיים TB רלוונטיים שונים הוכיחו יעילות החיסון יותר בעקבות חיסון ריאתי כפי בהשוואה לתוואי תת עורית או תוך-3-6. עם זאת, מנגנוני ההגנה מופעלים על ידי חיסון ריאתי אינם מובנים היטב. בשנים האחרונות, כמה יצירות הצביעו לעבר בתגובה בתיווך IL17 כגורם חשוב של תגובה חיסונית ברירית ספציפית TB, כמו במודלים של עכברים לוקים עבור יעילות מגן עקב חיסון רירי IL17 נפגע 7,8.

לאחרונה הראינו לראשונה כי אפי ממשל BCG מוגן DBA / 2 עכברים, זן עכבר מאופיין בהיעדר הגנה לאחר תת עורית BCG חיסון 9. תוצאות אלו הראו כי חיסון TB נשימה יכול להיות יעיל יותר בהפחתת שיעור השחפת במדינות אנדמיות, שבו BCG תוך-עורית נחשב יעיל נגד pulmonTB האר"י.

Protocol

כל העכברים הוחזקו בתנאים מבוקרים וצופים לכל סימן של מחלה. עבודה ניסויית נערכת הסכם עם הדירקטיבות אירופאיות ולאומיות להגנה של חיות ניסוי ועם אישור ועדת האתיקה המקומית המוסמכת. 1. הכנת מניות לכמת גליצרול של דנית BCG ושחפת Mycobacterium…

Representative Results

עבודה זו מתארת ​​את ההשוואה של שני מסלולים של ממשל של BCG: תת עורי אף. מסלול תת עורי ניתן להשוות את intradermal, המהווה את הציר הקליני הנוכחי עבור BCG ברחבי העולם. מסלול אפי חיסון שואף לחקות את הקו הטבעי של זיהום של M. שחפת, במטרה להשרות תגובה חיסונית ישיר?…

Discussion

Although current vaccine against tuberculosis, BCG, is the most widely administered vaccine in history, tuberculosis remains one of the leading causes of death and morbidity from infectious diseases worldwide. This paradox is explained by the lack of protection of this vaccine against pulmonary tuberculosis, the responsible form of transmission. New vaccination approaches effective against pulmonary forms of the disease are urgently needed, as they would have the greatest impact on disease transmission globally.

<p c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by “Spanish Ministry of Economy and Competitiveness” [grant number BIO2014-5258P], “European Commission” by the H2020 programs [grant numbers TBVAC2020 643381].

Materials

Middlebrook 7H9 broth BD 271310
Middlebrook ADC Enrichment BD 211887
Tween 80 Scharlau TW00800250
3-mm diameter Glass Beads Scharlau 038-138003
Middlebrook 7H10 Agar BD 262710
1-ml syringe 26GA 0.45×10 mm BD 301358
GentleMACS dissociator Miltenyi Biotec 130-093-235
C tubes Miltenyi Biotec 130-093-237
M tubes Miltenyi Biotec 130-093-236
Collagenase D Roche 11088882001
DNaseI Applichem A3778,0100
Falcon 70µm Cell Strainer Corning 352350
RPMI 1640 Sigma R0883
Red Blood Cell Lysing Buffer Sigma R7757
GlutaMAX Supplement Gibco 35050-061 100X concentrated
Penicillin-Streptomycin Solution Sigma P4333 100X concentrated
Fetal Calf Serum Biological Industries 04-001-1A
2-Mercaptoethanol Sigma M3148-25ML
Scepter 2.0 Handheld Automated Cell Counter Millipore PHCC20040
Scepter Cell Counter Sensors, 40 µm Millipore PHCC40050
Mycobacterium Tuberculosis – Tuberculin PPD Statens Serum Institut (SSI) 2390
Mouse IFN-γ ELISA development kit  Mabtech 3321-1H
Mouse IL17A ELISA development kit  Mabtech 3521-1H
Brefeldin A Sigma B7651
FITC Rat Anti-Mouse CD4 BD 553047
BD Cytofix/Cytoperm Kit BD 555028
APC-Cy7 Rat Anti-mouse IL-17A BD 560821
APC Mouse Anti-mouse IFNg BD 554413
LACHRYMAL OLIVE LUER LOCK 0.60 x 30 mm. 23G x 1 1/4” UNIMED 27.134 Used as trachea cannula for BAL
high-protein binding polystyrene flat-bottom 96-well plates MAXISORP NUNC 430341
Albumin, from bovine serum Sigma A4503
Goat Anti-Mouse IgA (α-chain specific)−Peroxidase antibody Sigma A4789
3,3′,5,5′-Tetramethylbenzidine (TMB)  Sigma T0440
MyTaq DNA Polymerase Bioline BIO-21107 The kit Includes Buffer 5x

References

  1. Zumla, A., et al. The WHO 2014 global tuberculosis report–further to go. Lancet Glob Health. 3 (1), e10-e12 (2015).
  2. Mangtani, P., et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 58 (4), 470-480 (2014).
  3. Aguilo, N., et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin Vaccine Immunol. 21 (4), 594-597 (2014).
  4. Chen, L., Wang, J., Zganiacz, A., Xing, Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 72 (1), 238-246 (2004).
  5. Giri, P. K., Verma, I., Khuller, G. K. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J Infect. 53 (5), 350-356 (2006).
  6. Lagranderie, M., et al. BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis. 74 (1), 38-46 (1993).
  7. Gopal, R., et al. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol. 6 (5), 972-984 (2013).
  8. Khader, S. A., et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 8 (4), 369-377 (2007).
  9. Aguilo, N., et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis. , (2015).
  10. Middlebrook, G., Cohn, M. L. Bacteriology of tuberculosis: laboratory methods. Am J Public Health Nations Health. 48 (7), 844-853 (1958).
  11. Brosch, R., et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 99 (6), 3684-3689 (2002).
  12. Kaushal, D., et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun. 6, 8533 (2015).
  13. Lochhead, J. J., Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 64 (7), 614-628 (2012).
  14. Lochhead, J. J., Wolak, D. J., Pizzo, M. E., Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab. 35 (3), 371-381 (2015).
  15. Griffiths, K. L., et al. Cholera toxin enhances vaccine-induced protection against Mycobacterium tuberculosis challenge in mice. PLoS One. 8 (10), e78312 (2013).
  16. Hirota, K., et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 14 (4), 372-379 (2013).
  17. Jaffar, Z., Ferrini, M. E., Herritt, L. A., Roberts, K. Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol. 182 (8), 4507-4511 (2009).

Play Video

Cite This Article
Uranga, S., Marinova, D., Martin, C., Aguilo, N. Protective Efficacy and Pulmonary Immune Response Following Subcutaneous and Intranasal BCG Administration in Mice. J. Vis. Exp. (115), e54440, doi:10.3791/54440 (2016).

View Video